/*
This file is part of cpp-ethereum.
cpp-ethereum is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
cpp-ethereum is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with cpp-ethereum. If not, see .
*/
/** @file EthereumPeer.h
* @author Gav Wood
* @date 2014
*/
#pragma once
#include
#include
#include
#include
#include
// Make sure boost/asio.hpp is included before windows.h.
#include
#include
#include
#include
#include
#include
#include "CommonNet.h"
#include "DownloadMan.h"
namespace dev
{
namespace eth
{
/**
* @brief The EthereumPeer class
* @todo Document fully.
* @todo make state transitions thread-safe.
*/
class EthereumPeer: public p2p::Capability
{
friend class EthereumHost;
public:
/// Basic constructor.
EthereumPeer(p2p::Session* _s, p2p::HostCapabilityFace* _h, unsigned _i);
/// Basic destructor.
virtual ~EthereumPeer();
/// What is our name?
static std::string name() { return "eth"; }
/// What is our version?
static u256 version() { return c_protocolVersion; }
/// How many message types do we have?
static unsigned messageCount() { return PacketCount; }
/// What is the ethereum subprotocol host object.
EthereumHost* host() const;
private:
using p2p::Capability::sealAndSend;
/// Interpret an incoming message.
virtual bool interpret(unsigned _id, RLP const& _r);
/// Transition state in a particular direction.
void transition(Asking _wantState, bool _force = false);
/// Attempt to begin syncing with this peer; first check the peer has a more difficlult chain to download, then start asking for hashes, then move to blocks.
void attemptSync();
/// Abort the sync operation.
void abortSync();
/// Clear all known transactions.
void clearKnownTransactions() { std::lock_guard l(x_knownTransactions); m_knownTransactions.clear(); }
/// Update our asking state.
void setAsking(Asking _g, bool _isSyncing);
/// Update our syncing requirements state.
void setNeedsSyncing(h256 _latestHash, u256 _td);
void resetNeedsSyncing() { setNeedsSyncing(h256(), 0); }
/// Do we presently need syncing with this peer?
bool needsSyncing() const { return !!m_latestHash; }
/// Are we presently syncing with this peer?
bool isSyncing() const;
/// Check whether the session should bother grabbing the peer's blocks.
bool shouldGrabBlocks() const;
/// Runs period checks to check up on the peer.
void tick();
/// Peer's protocol version.
unsigned m_protocolVersion;
/// Peer's network id.
u256 m_networkId;
/// What, if anything, we last asked the other peer for.
Asking m_asking = Asking::Nothing;
/// When we asked for it. Allows a time out.
std::chrono::system_clock::time_point m_lastAsk;
/// Whether this peer is in the process of syncing or not. Only one peer can be syncing at once.
bool m_isSyncing = false;
/// These are determined through either a Status message or from NewBlock.
h256 m_latestHash; ///< Peer's latest block's hash that we know about or default null value if no need to sync.
u256 m_totalDifficulty; ///< Peer's latest block's total difficulty.
/// Once a sync is started on this peer, they are cleared and moved into m_syncing*.
/// This is built as we ask for hashes. Once no more hashes are given, we present this to the
/// host who initialises the DownloadMan and m_sub becomes active for us to begin asking for blocks.
h256s m_syncingNeededBlocks; ///< The blocks that we should download from this peer.
h256 m_syncingLastReceivedHash; ///< Hash more recently received from peer.
h256 m_syncingLatestHash; ///< Peer's latest block's hash, as of the current sync.
u256 m_syncingTotalDifficulty; ///< Peer's latest block's total difficulty, as of the current sync.
/// Once we're asking for blocks, this becomes in use.
DownloadSub m_sub;
/// Have we received a GetTransactions packet that we haven't yet answered?
bool m_requireTransactions = false;
Mutex x_knownBlocks;
h256Set m_knownBlocks; ///< Blocks that the peer already knows about (that don't need to be sent to them).
Mutex x_knownTransactions;
h256Set m_knownTransactions; ///< Transactions that the peer already knows of.
};
}
}