/*
This file is part of cpp-ethereum.
cpp-ethereum is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
cpp-ethereum is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with cpp-ethereum. If not, see .
*/
/** @file Host.cpp
* @authors:
* Gav Wood
* Eric Lombrozo (Windows version of populateAddresses())
* @date 2014
*/
#include "Host.h"
#include
#ifdef _WIN32
// winsock is already included
// #include
#else
#include
#endif
#include
#include
#include
#include
#include
#include
#include
#include "Session.h"
#include "Common.h"
#include "Capability.h"
#include "UPnP.h"
using namespace std;
using namespace dev;
using namespace dev::p2p;
// Addresses we will skip during network interface discovery
// Use a vector as the list is small
// Why this and not names?
// Under MacOSX loopback (127.0.0.1) can be named lo0 and br0 are bridges (0.0.0.0)
static const set c_rejectAddresses = {
{bi::address_v4::from_string("127.0.0.1")},
{bi::address_v6::from_string("::1")},
{bi::address_v4::from_string("0.0.0.0")},
{bi::address_v6::from_string("::")}
};
Host::Host(std::string const& _clientVersion, NetworkPreferences const& _n, bool _start):
Worker("p2p"),
m_clientVersion(_clientVersion),
m_netPrefs(_n),
m_acceptor(m_ioService),
m_socket(m_ioService),
m_key(KeyPair::create())
{
populateAddresses();
clog(NetNote) << "Id:" << id().abridged();
if (_start)
start();
}
Host::~Host()
{
stop();
}
void Host::start()
{
if (isWorking())
stop();
for (unsigned i = 0; i < 2; ++i)
{
bi::tcp::endpoint endpoint(bi::tcp::v4(), i ? 0 : m_netPrefs.listenPort);
try
{
m_acceptor.open(endpoint.protocol());
m_acceptor.set_option(ba::socket_base::reuse_address(true));
m_acceptor.bind(endpoint);
m_acceptor.listen();
m_listenPort = i ? m_acceptor.local_endpoint().port() : m_netPrefs.listenPort;
break;
}
catch (...)
{
if (i)
{
cwarn << "Couldn't start accepting connections on host. Something very wrong with network?\n" << boost::current_exception_diagnostic_information();
return;
}
m_acceptor.close();
continue;
}
}
determinePublic(m_netPrefs.publicIP, m_netPrefs.upnp);
ensureAccepting();
if (!m_public.address().is_unspecified() && (m_nodes.empty() || m_nodes[m_nodesList[0]]->id != id()))
noteNode(id(), m_public, Origin::Perfect, false);
clog(NetNote) << "Id:" << id().abridged();
for (auto const& h: m_capabilities)
h.second->onStarting();
startWorking();
}
void Host::stop()
{
for (auto const& h: m_capabilities)
h.second->onStopping();
stopWorking();
if (m_acceptor.is_open())
{
if (m_accepting)
m_acceptor.cancel();
m_acceptor.close();
m_accepting = false;
}
if (m_socket.is_open())
m_socket.close();
disconnectPeers();
m_ioService.reset();
}
unsigned Host::protocolVersion() const
{
return 1;
}
void Host::registerPeer(std::shared_ptr _s, CapDescs const& _caps)
{
if (!_s->m_node || !_s->m_node->id)
{
cwarn << "Attempting to register a peer without node information!";
return;
}
{
RecursiveGuard l(x_peers);
m_peers[_s->m_node->id] = _s;
}
unsigned o = (unsigned)UserPacket;
for (auto const& i: _caps)
if (haveCapability(i))
{
_s->m_capabilities[i] = shared_ptr(m_capabilities[i]->newPeerCapability(_s.get(), o));
o += m_capabilities[i]->messageCount();
}
}
void Host::disconnectPeers()
{
for (unsigned n = 0;; n = 0)
{
{
RecursiveGuard l(x_peers);
for (auto i: m_peers)
if (auto p = i.second.lock())
{
p->disconnect(ClientQuit);
n++;
}
}
if (!n)
break;
m_ioService.poll();
this_thread::sleep_for(chrono::milliseconds(100));
}
delete m_upnp;
m_upnp = nullptr;
}
void Host::seal(bytes& _b)
{
_b[0] = 0x22;
_b[1] = 0x40;
_b[2] = 0x08;
_b[3] = 0x91;
uint32_t len = (uint32_t)_b.size() - 8;
_b[4] = (len >> 24) & 0xff;
_b[5] = (len >> 16) & 0xff;
_b[6] = (len >> 8) & 0xff;
_b[7] = len & 0xff;
}
void Host::determinePublic(string const& _publicAddress, bool _upnp)
{
if (_upnp)
try
{
m_upnp = new UPnP;
}
catch (NoUPnPDevice) {} // let m_upnp continue as null - we handle it properly.
bi::tcp::resolver r(m_ioService);
if (m_upnp && m_upnp->isValid() && m_peerAddresses.size())
{
clog(NetNote) << "External addr:" << m_upnp->externalIP();
int p;
for (auto const& addr : m_peerAddresses)
if ((p = m_upnp->addRedirect(addr.to_string().c_str(), m_listenPort)))
break;
if (p)
clog(NetNote) << "Punched through NAT and mapped local port" << m_listenPort << "onto external port" << p << ".";
else
{
// couldn't map
clog(NetWarn) << "Couldn't punch through NAT (or no NAT in place). Assuming" << m_listenPort << "is local & external port.";
p = m_listenPort;
}
auto eip = m_upnp->externalIP();
if (eip == string("0.0.0.0") && _publicAddress.empty())
m_public = bi::tcp::endpoint(bi::address(), (unsigned short)p);
else
{
m_public = bi::tcp::endpoint(bi::address::from_string(_publicAddress.empty() ? eip : _publicAddress), (unsigned short)p);
m_addresses.push_back(m_public.address());
}
}
else
{
// No UPnP - fallback on given public address or, if empty, the assumed peer address.
m_public = bi::tcp::endpoint(_publicAddress.size() ? bi::address::from_string(_publicAddress)
: m_peerAddresses.size() ? m_peerAddresses[0]
: bi::address(), m_listenPort);
m_addresses.push_back(m_public.address());
}
}
void Host::populateAddresses()
{
#ifdef _WIN32
WSAData wsaData;
if (WSAStartup(MAKEWORD(1, 1), &wsaData) != 0)
BOOST_THROW_EXCEPTION(NoNetworking());
char ac[80];
if (gethostname(ac, sizeof(ac)) == SOCKET_ERROR)
{
clog(NetWarn) << "Error " << WSAGetLastError() << " when getting local host name.";
WSACleanup();
BOOST_THROW_EXCEPTION(NoNetworking());
}
struct hostent* phe = gethostbyname(ac);
if (phe == 0)
{
clog(NetWarn) << "Bad host lookup.";
WSACleanup();
BOOST_THROW_EXCEPTION(NoNetworking());
}
for (int i = 0; phe->h_addr_list[i] != 0; ++i)
{
struct in_addr addr;
memcpy(&addr, phe->h_addr_list[i], sizeof(struct in_addr));
char *addrStr = inet_ntoa(addr);
bi::address ad(bi::address::from_string(addrStr));
m_addresses.push_back(ad.to_v4());
bool isLocal = std::find(c_rejectAddresses.begin(), c_rejectAddresses.end(), ad) != c_rejectAddresses.end();
if (!isLocal)
m_peerAddresses.push_back(ad.to_v4());
clog(NetNote) << "Address: " << ac << " = " << m_addresses.back() << (isLocal ? " [LOCAL]" : " [PEER]");
}
WSACleanup();
#else
ifaddrs* ifaddr;
if (getifaddrs(&ifaddr) == -1)
BOOST_THROW_EXCEPTION(NoNetworking());
bi::tcp::resolver r(m_ioService);
for (ifaddrs* ifa = ifaddr; ifa; ifa = ifa->ifa_next)
{
if (!ifa->ifa_addr)
continue;
if (ifa->ifa_addr->sa_family == AF_INET)
{
char host[NI_MAXHOST];
if (getnameinfo(ifa->ifa_addr, sizeof(struct sockaddr_in), host, NI_MAXHOST, NULL, 0, NI_NUMERICHOST))
continue;
try
{
auto it = r.resolve({host, "30303"});
bi::tcp::endpoint ep = it->endpoint();
bi::address ad = ep.address();
m_addresses.push_back(ad.to_v4());
bool isLocal = std::find(c_rejectAddresses.begin(), c_rejectAddresses.end(), ad) != c_rejectAddresses.end();
if (!isLocal)
m_peerAddresses.push_back(ad.to_v4());
clog(NetNote) << "Address: " << host << " = " << m_addresses.back() << (isLocal ? " [LOCAL]" : " [PEER]");
}
catch (...)
{
clog(NetNote) << "Couldn't resolve: " << host;
}
}
else if (ifa->ifa_addr->sa_family == AF_INET6)
{
char host[NI_MAXHOST];
if (getnameinfo(ifa->ifa_addr, sizeof(struct sockaddr_in6), host, NI_MAXHOST, NULL, 0, NI_NUMERICHOST))
continue;
try
{
auto it = r.resolve({host, "30303"});
bi::tcp::endpoint ep = it->endpoint();
bi::address ad = ep.address();
m_addresses.push_back(ad.to_v6());
bool isLocal = std::find(c_rejectAddresses.begin(), c_rejectAddresses.end(), ad) != c_rejectAddresses.end();
if (!isLocal)
m_peerAddresses.push_back(ad);
clog(NetNote) << "Address: " << host << " = " << m_addresses.back() << (isLocal ? " [LOCAL]" : " [PEER]");
}
catch (...)
{
clog(NetNote) << "Couldn't resolve: " << host;
}
}
}
freeifaddrs(ifaddr);
#endif
}
shared_ptr Host::noteNode(NodeId _id, bi::tcp::endpoint const& _a, Origin _o, bool _ready, NodeId _oldId)
{
RecursiveGuard l(x_peers);
cnote << "Node:" << _id.abridged() << _a << (_ready ? "ready" : "used") << _oldId.abridged() << (m_nodes.count(_id) ? "[have]" : "[NEW]");
if (!_a.port())
{
cwarn << "PORT IS INVALID!";
}
unsigned i;
if (!m_nodes.count(_id))
{
if (m_nodes.count(_oldId))
{
i = m_nodes[_oldId]->index;
m_nodes.erase(_oldId);
m_nodesList[i] = _id;
}
else
{
i = m_nodesList.size();
m_nodesList.push_back(_id);
}
m_nodes[_id] = make_shared();
m_nodes[_id]->id = _id;
m_nodes[_id]->address = _a;
m_nodes[_id]->index = i;
m_nodes[_id]->idOrigin = _o;
}
else
{
i = m_nodes[_id]->index;
m_nodes[_id]->idOrigin = max(m_nodes[_id]->idOrigin, _o);
}
m_ready.extendAll(i);
m_private.extendAll(i);
if (_ready)
m_ready += i;
else
m_ready -= i;
if (!_a.port() || (isPrivateAddress(_a.address()) && !m_netPrefs.localNetworking))
m_private += i;
else
m_private -= i;
cnote << m_nodes[_id]->index << ":" << m_ready;
m_hadNewNodes = true;
return m_nodes[_id];
}
Nodes Host::potentialPeers(RangeMask const& _known)
{
RecursiveGuard l(x_peers);
Nodes ret;
auto ns = (m_netPrefs.localNetworking ? _known : (m_private + _known)).inverted();
for (auto i: ns)
ret.push_back(*m_nodes[m_nodesList[i]]);
return ret;
}
void Host::ensureAccepting()
{
if (!m_accepting)
{
clog(NetConnect) << "Listening on local port " << m_listenPort << " (public: " << m_public << ")";
m_accepting = true;
m_acceptor.async_accept(m_socket, [=](boost::system::error_code ec)
{
if (!ec)
{
try
{
try {
clog(NetConnect) << "Accepted connection from " << m_socket.remote_endpoint();
} catch (...){}
bi::address remoteAddress = m_socket.remote_endpoint().address();
// Port defaults to 0 - we let the hello tell us which port the peer listens to
auto p = std::make_shared(this, std::move(m_socket), bi::tcp::endpoint(remoteAddress, 0));
p->start();
}
catch (Exception const& _e)
{
clog(NetWarn) << "ERROR: " << diagnostic_information(_e);
}
catch (std::exception const& _e)
{
clog(NetWarn) << "ERROR: " << _e.what();
}
}
m_accepting = false;
if (ec.value() < 1)
ensureAccepting();
});
}
}
string Host::pocHost()
{
vector strs;
boost::split(strs, dev::Version, boost::is_any_of("."));
return "poc-" + strs[1] + ".ethdev.com";
}
void Host::connect(std::string const& _addr, unsigned short _port) noexcept
{
for (int i = 0; i < 2; ++i)
{
try
{
if (i == 0)
{
bi::tcp::resolver r(m_ioService);
connect(r.resolve({_addr, toString(_port)})->endpoint());
}
else
connect(bi::tcp::endpoint(bi::address::from_string(_addr), _port));
break;
}
catch (Exception const& _e)
{
// Couldn't connect
clog(NetConnect) << "Bad host " << _addr << "\n" << diagnostic_information(_e);
}
catch (exception const& e)
{
// Couldn't connect
clog(NetConnect) << "Bad host " << _addr << " (" << e.what() << ")";
}
}
}
void Host::connect(bi::tcp::endpoint const& _ep)
{
clog(NetConnect) << "Attempting single-shot connection to " << _ep;
bi::tcp::socket* s = new bi::tcp::socket(m_ioService);
s->async_connect(_ep, [=](boost::system::error_code const& ec)
{
if (ec)
clog(NetConnect) << "Connection refused to " << _ep << " (" << ec.message() << ")";
else
{
auto p = make_shared(this, std::move(*s), _ep);
clog(NetConnect) << "Connected to " << _ep;
p->start();
}
delete s;
});
}
void Node::connect(Host* _h)
{
clog(NetConnect) << "Attempting connection to node" << id.abridged() << "@" << address << "from" << _h->id().abridged();
_h->m_ready -= index;
bi::tcp::socket* s = new bi::tcp::socket(_h->m_ioService);
s->async_connect(address, [=](boost::system::error_code const& ec)
{
if (ec)
{
clog(NetConnect) << "Connection refused to node" << id.abridged() << "@" << address << "(" << ec.message() << ")";
failedAttempts++;
lastAttempted = std::chrono::system_clock::now();
_h->m_ready += index;
}
else
{
clog(NetConnect) << "Connected to" << id.abridged() << "@" << address;
failedAttempts = 0;
lastConnected = std::chrono::system_clock::now();
auto p = make_shared(_h, std::move(*s), _h->node(id), true); // true because we don't care about ids matched for now. Once we have permenant IDs this will matter a lot more and we can institute a safer mechanism.
p->start();
}
delete s;
});
}
bool Host::havePeer(NodeId _id) const
{
RecursiveGuard l(x_peers);
// Remove dead peers from list.
for (auto i = m_peers.begin(); i != m_peers.end();)
if (i->second.lock().get())
++i;
else
i = m_peers.erase(i);
return !!m_peers.count(_id);
}
unsigned cumulativeFallback(unsigned _failed)
{
if (_failed < 5)
return _failed * 5;
else if (_failed < 15)
return 25 + (_failed - 5) * 10;
else
return 25 + 100 + (_failed - 15) * 20;
}
void Host::growPeers()
{
RecursiveGuard l(x_peers);
int morePeers = (int)m_idealPeerCount - m_peers.size();
if (morePeers > 0)
{
auto toTry = m_ready;
if (!m_netPrefs.localNetworking)
toTry -= m_private;
set ns;
for (auto i: toTry)
if (chrono::system_clock::now() > m_nodes[m_nodesList[i]]->lastAttempted + chrono::seconds(cumulativeFallback(m_nodes[m_nodesList[i]]->failedAttempts)))
ns.insert(*m_nodes[m_nodesList[i]]);
if (ns.size())
for (Node const& i: ns)
{
m_nodes[i.id]->connect(this);
if (!--morePeers)
return;
}
else
{
ensureAccepting();
requestNodes();
}
}
}
void Host::requestNodes()
{
for (auto const& i: m_peers)
if (auto p = i.second.lock())
p->ensureNodesRequested();
}
void Host::prunePeers()
{
RecursiveGuard l(x_peers);
// We'll keep at most twice as many as is ideal, halfing what counts as "too young to kill" until we get there.
for (unsigned old = 15000; m_peers.size() > m_idealPeerCount * 2 && old > 100; old /= 2)
while (m_peers.size() > m_idealPeerCount)
{
// look for worst peer to kick off
// first work out how many are old enough to kick off.
shared_ptr worst;
unsigned agedPeers = 0;
for (auto i: m_peers)
if (auto p = i.second.lock())
if (/*(m_mode != NodeMode::Host || p->m_caps != 0x01) &&*/ chrono::steady_clock::now() > p->m_connect + chrono::milliseconds(old)) // don't throw off new peers; peer-servers should never kick off other peer-servers.
{
++agedPeers;
if ((!worst || p->rating() < worst->rating() || (p->rating() == worst->rating() && p->m_connect > worst->m_connect))) // kill older ones
worst = p;
}
if (!worst || agedPeers <= m_idealPeerCount)
break;
worst->disconnect(TooManyPeers);
}
// Remove dead peers from list.
for (auto i = m_peers.begin(); i != m_peers.end();)
if (i->second.lock().get())
++i;
else
i = m_peers.erase(i);
}
std::vector Host::peers(bool _updatePing) const
{
RecursiveGuard l(x_peers);
if (_updatePing)
{
const_cast(this)->pingAll();
this_thread::sleep_for(chrono::milliseconds(200));
}
std::vector ret;
for (auto& i: m_peers)
if (auto j = i.second.lock())
if (j->m_socket.is_open())
ret.push_back(j->m_info);
return ret;
}
void Host::doWork()
{
growPeers();
prunePeers();
if (m_hadNewNodes)
{
for (auto p: m_peers)
if (auto pp = p.second.lock())
pp->serviceNodesRequest();
m_hadNewNodes = false;
}
m_ioService.poll();
}
void Host::pingAll()
{
RecursiveGuard l(x_peers);
for (auto& i: m_peers)
if (auto j = i.second.lock())
j->ping();
}
bytes Host::saveNodes() const
{
RLPStream nodes;
int count = 0;
{
RecursiveGuard l(x_peers);
for (auto const& i: m_nodes)
{
Node const& n = *(i.second);
if (!n.dead && n.id != id() && !isPrivateAddress(n.address.address()))
{
nodes.appendList(10);
if (n.address.address().is_v4())
nodes << n.address.address().to_v4().to_bytes();
else
nodes << n.address.address().to_v6().to_bytes();
nodes << n.address.port() << n.id << (int)n.idOrigin
<< std::chrono::duration_cast(n.lastConnected.time_since_epoch()).count()
<< std::chrono::duration_cast(n.lastAttempted.time_since_epoch()).count()
<< n.failedAttempts << (unsigned)n.lastDisconnect << n.score << n.rating;
count++;
}
}
}
RLPStream ret(3);
ret << 0 << m_key.secret();
ret.appendList(count).appendRaw(nodes.out(), count);
return ret.out();
}
void Host::restoreNodes(bytesConstRef _b)
{
RecursiveGuard l(x_peers);
RLP r(_b);
if (r.itemCount() > 0 && r[0].isInt())
switch (r[0].toInt())
{
case 0:
{
auto oldId = id();
m_key = KeyPair(r[1].toHash());
noteNode(id(), m_public, Origin::Perfect, false, oldId);
for (auto i: r[2])
{
bi::tcp::endpoint ep;
if (i[0].itemCount() == 4)
ep = bi::tcp::endpoint(bi::address_v4(i[0].toArray()), i[1].toInt());
else
ep = bi::tcp::endpoint(bi::address_v6(i[0].toArray()), i[1].toInt());
auto id = (NodeId)i[2];
if (!m_nodes.count(id))
{
auto o = (Origin)i[3].toInt();
auto n = noteNode(id, ep, o, true);
n->lastConnected = chrono::system_clock::time_point(chrono::seconds(i[4].toInt()));
n->lastAttempted = chrono::system_clock::time_point(chrono::seconds(i[5].toInt()));
n->failedAttempts = i[6].toInt();
n->lastDisconnect = (DisconnectReason)i[7].toInt();
n->score = (int)i[8].toInt();
n->rating = (int)i[9].toInt();
}
}
}
default:;
}
else
for (auto i: r)
{
auto id = (NodeId)i[2];
if (!m_nodes.count(id))
{
bi::tcp::endpoint ep;
if (i[0].itemCount() == 4)
ep = bi::tcp::endpoint(bi::address_v4(i[0].toArray()), i[1].toInt());
else
ep = bi::tcp::endpoint(bi::address_v6(i[0].toArray()), i[1].toInt());
auto n = noteNode(id, ep, Origin::Self, true);
}
}
}