#include "Compiler.h" #include #include #include #include #include #include #include #include #include #include "Type.h" #include "Memory.h" #include "Stack.h" #include "Ext.h" #include "GasMeter.h" #include "Utils.h" #include "Endianness.h" #include "Arith256.h" #include "Runtime.h" namespace dev { namespace eth { namespace jit { Compiler::Compiler(Options const& _options): m_options(_options), m_builder(llvm::getGlobalContext()) { Type::init(m_builder.getContext()); } void Compiler::createBasicBlocks(bytes const& _bytecode) { std::set splitPoints; // Sorted collections of instruction indices where basic blocks start/end std::map directJumpTargets; std::vector indirectJumpTargets; boost::dynamic_bitset<> validJumpTargets(std::max(_bytecode.size(), size_t(1))); splitPoints.insert(0); // First basic block validJumpTargets[0] = true; for (auto curr = _bytecode.begin(); curr != _bytecode.end(); ++curr) { ProgramCounter currentPC = curr - _bytecode.begin(); validJumpTargets[currentPC] = true; auto inst = Instruction(*curr); switch (inst) { case Instruction::ANY_PUSH: { auto val = readPushData(curr, _bytecode.end()); auto next = curr + 1; if (next == _bytecode.end()) break; auto nextInst = Instruction(*next); if (nextInst == Instruction::JUMP || nextInst == Instruction::JUMPI) { // Create a block for the JUMP target. ProgramCounter targetPC = val < _bytecode.size() ? val.convert_to() : _bytecode.size(); splitPoints.insert(targetPC); ProgramCounter jumpPC = (next - _bytecode.begin()); directJumpTargets[jumpPC] = targetPC; } break; } case Instruction::JUMPDEST: { // A basic block starts here. splitPoints.insert(currentPC); indirectJumpTargets.push_back(currentPC); break; } case Instruction::JUMP: case Instruction::JUMPI: case Instruction::RETURN: case Instruction::STOP: case Instruction::SUICIDE: { // Create a basic block starting at the following instruction. if (curr + 1 < _bytecode.end()) splitPoints.insert(currentPC + 1); break; } default: break; } } // Remove split points generated from jumps out of code or into data. for (auto it = splitPoints.cbegin(); it != splitPoints.cend();) { if (*it > _bytecode.size() || !validJumpTargets[*it]) it = splitPoints.erase(it); else ++it; } for (auto it = splitPoints.cbegin(); it != splitPoints.cend();) { auto beginInstIdx = *it; ++it; auto endInstIdx = it != splitPoints.cend() ? *it : _bytecode.size(); basicBlocks.emplace(std::piecewise_construct, std::forward_as_tuple(beginInstIdx), std::forward_as_tuple(beginInstIdx, endInstIdx, m_mainFunc, m_builder)); } m_stopBB = llvm::BasicBlock::Create(m_mainFunc->getContext(), "Stop", m_mainFunc); m_badJumpBlock = std::unique_ptr(new BasicBlock("BadJumpBlock", m_mainFunc, m_builder)); m_jumpTableBlock = std::unique_ptr(new BasicBlock("JumpTableBlock", m_mainFunc, m_builder)); for (auto it = directJumpTargets.cbegin(); it != directJumpTargets.cend(); ++it) { if (it->second >= _bytecode.size()) { // Jumping out of code means STOP m_directJumpTargets[it->first] = m_stopBB; continue; } auto blockIter = basicBlocks.find(it->second); if (blockIter != basicBlocks.end()) { m_directJumpTargets[it->first] = blockIter->second.llvm(); } else { clog(JIT) << "Bad JUMP at PC " << it->first << ": " << it->second << " is not a valid PC"; m_directJumpTargets[it->first] = m_badJumpBlock->llvm(); } } for (auto it = indirectJumpTargets.cbegin(); it != indirectJumpTargets.cend(); ++it) m_indirectJumpTargets.push_back(&basicBlocks.find(*it)->second); } std::unique_ptr Compiler::compile(bytes const& _bytecode) { auto module = std::unique_ptr(new llvm::Module("main", m_builder.getContext())); // Create main function llvm::Type* mainFuncArgTypes[] = {m_builder.getInt32Ty(), Type::RuntimePtr}; // There must be int in first place because LLVM does not support other signatures auto mainFuncType = llvm::FunctionType::get(Type::MainReturn, mainFuncArgTypes, false); m_mainFunc = llvm::Function::Create(mainFuncType, llvm::Function::ExternalLinkage, "main", module.get()); m_mainFunc->arg_begin()->getNextNode()->setName("rt"); // Create the basic blocks. auto entryBlock = llvm::BasicBlock::Create(m_builder.getContext(), "entry", m_mainFunc); m_builder.SetInsertPoint(entryBlock); createBasicBlocks(_bytecode); // Init runtime structures. RuntimeManager runtimeManager(m_builder); GasMeter gasMeter(m_builder, runtimeManager); Memory memory(runtimeManager, gasMeter); Ext ext(runtimeManager); Stack stack(m_builder, runtimeManager); Arith256 arith(m_builder); m_builder.CreateBr(basicBlocks.begin()->second); for (auto basicBlockPairIt = basicBlocks.begin(); basicBlockPairIt != basicBlocks.end(); ++basicBlockPairIt) { auto& basicBlock = basicBlockPairIt->second; auto iterCopy = basicBlockPairIt; ++iterCopy; auto nextBasicBlock = (iterCopy != basicBlocks.end()) ? iterCopy->second.llvm() : nullptr; compileBasicBlock(basicBlock, _bytecode, runtimeManager, arith, memory, ext, gasMeter, nextBasicBlock); } // Code for special blocks: // TODO: move to separate function. m_builder.SetInsertPoint(m_stopBB); m_builder.CreateRet(Constant::get(ReturnCode::Stop)); m_builder.SetInsertPoint(m_badJumpBlock->llvm()); m_builder.CreateRet(Constant::get(ReturnCode::BadJumpDestination)); m_builder.SetInsertPoint(m_jumpTableBlock->llvm()); if (m_indirectJumpTargets.size() > 0) { auto dest = m_jumpTableBlock->localStack().pop(); auto switchInstr = m_builder.CreateSwitch(dest, m_badJumpBlock->llvm(), m_indirectJumpTargets.size()); for (auto it = m_indirectJumpTargets.cbegin(); it != m_indirectJumpTargets.cend(); ++it) { auto& bb = *it; auto dest = Constant::get(bb->begin()); switchInstr->addCase(dest, bb->llvm()); } } else m_builder.CreateBr(m_badJumpBlock->llvm()); removeDeadBlocks(); dumpCFGifRequired("blocks-init.dot"); if (m_options.optimizeStack) { std::vector blockList; for (auto& entry : basicBlocks) blockList.push_back(&entry.second); if (m_jumpTableBlock) blockList.push_back(m_jumpTableBlock.get()); BasicBlock::linkLocalStacks(blockList, m_builder); dumpCFGifRequired("blocks-opt.dot"); } for (auto& entry : basicBlocks) entry.second.synchronizeLocalStack(stack); if (m_jumpTableBlock) m_jumpTableBlock->synchronizeLocalStack(stack); dumpCFGifRequired("blocks-sync.dot"); if (m_jumpTableBlock && m_options.rewriteSwitchToBranches) { llvm::FunctionPassManager fpManager(module.get()); fpManager.add(llvm::createLowerSwitchPass()); fpManager.doInitialization(); fpManager.run(*m_mainFunc); } return module; } void Compiler::compileBasicBlock(BasicBlock& _basicBlock, bytes const& _bytecode, RuntimeManager& _runtimeManager, Arith256& _arith, Memory& _memory, Ext& _ext, GasMeter& _gasMeter, llvm::BasicBlock* _nextBasicBlock) { if (!_nextBasicBlock) // this is the last block in the code _nextBasicBlock = m_stopBB; m_builder.SetInsertPoint(_basicBlock.llvm()); auto& stack = _basicBlock.localStack(); for (auto currentPC = _basicBlock.begin(); currentPC != _basicBlock.end(); ++currentPC) { auto inst = static_cast(_bytecode[currentPC]); _gasMeter.count(inst); switch (inst) { case Instruction::ADD: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto result = m_builder.CreateAdd(lhs, rhs); stack.push(result); break; } case Instruction::SUB: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto result = m_builder.CreateSub(lhs, rhs); stack.push(result); break; } case Instruction::MUL: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto res = _arith.mul(lhs, rhs); stack.push(res); break; } case Instruction::DIV: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto res = _arith.div(lhs, rhs); stack.push(res); break; } case Instruction::SDIV: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto res = _arith.sdiv(lhs, rhs); stack.push(res); break; } case Instruction::MOD: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto res = _arith.mod(lhs, rhs); stack.push(res); break; } case Instruction::SMOD: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto res = _arith.smod(lhs, rhs); stack.push(res); break; } case Instruction::EXP: { auto left = stack.pop(); auto right = stack.pop(); auto ret = _ext.exp(left, right); stack.push(ret); break; } case Instruction::NOT: { auto value = stack.pop(); auto ret = m_builder.CreateXor(value, Constant::get(-1), "bnot"); stack.push(ret); break; } case Instruction::LT: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto res1 = m_builder.CreateICmpULT(lhs, rhs); auto res256 = m_builder.CreateZExt(res1, Type::Word); stack.push(res256); break; } case Instruction::GT: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto res1 = m_builder.CreateICmpUGT(lhs, rhs); auto res256 = m_builder.CreateZExt(res1, Type::Word); stack.push(res256); break; } case Instruction::SLT: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto res1 = m_builder.CreateICmpSLT(lhs, rhs); auto res256 = m_builder.CreateZExt(res1, Type::Word); stack.push(res256); break; } case Instruction::SGT: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto res1 = m_builder.CreateICmpSGT(lhs, rhs); auto res256 = m_builder.CreateZExt(res1, Type::Word); stack.push(res256); break; } case Instruction::EQ: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto res1 = m_builder.CreateICmpEQ(lhs, rhs); auto res256 = m_builder.CreateZExt(res1, Type::Word); stack.push(res256); break; } case Instruction::ISZERO: { auto top = stack.pop(); auto iszero = m_builder.CreateICmpEQ(top, Constant::get(0), "iszero"); auto result = m_builder.CreateZExt(iszero, Type::Word); stack.push(result); break; } case Instruction::AND: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto res = m_builder.CreateAnd(lhs, rhs); stack.push(res); break; } case Instruction::OR: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto res = m_builder.CreateOr(lhs, rhs); stack.push(res); break; } case Instruction::XOR: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto res = m_builder.CreateXor(lhs, rhs); stack.push(res); break; } case Instruction::BYTE: { const auto byteNum = stack.pop(); auto value = stack.pop(); value = Endianness::toBE(m_builder, value); auto bytes = m_builder.CreateBitCast(value, llvm::VectorType::get(Type::Byte, 32), "bytes"); auto byte = m_builder.CreateExtractElement(bytes, byteNum, "byte"); value = m_builder.CreateZExt(byte, Type::Word); auto byteNumValid = m_builder.CreateICmpULT(byteNum, Constant::get(32)); value = m_builder.CreateSelect(byteNumValid, value, Constant::get(0)); stack.push(value); break; } case Instruction::ADDMOD: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto mod = stack.pop(); auto res = _arith.addmod(lhs, rhs, mod); stack.push(res); break; } case Instruction::MULMOD: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto mod = stack.pop(); auto res = _arith.mulmod(lhs, rhs, mod); stack.push(res); break; } case Instruction::SIGNEXTEND: { auto idx = stack.pop(); auto word = stack.pop(); auto k32_ = m_builder.CreateTrunc(idx, m_builder.getIntNTy(5), "k_32"); auto k32 = m_builder.CreateZExt(k32_, Type::Word); auto k32x8 = m_builder.CreateMul(k32, Constant::get(8), "kx8"); // test for word >> (k * 8 + 7) auto bitpos = m_builder.CreateAdd(k32x8, Constant::get(7), "bitpos"); auto bitval = m_builder.CreateLShr(word, bitpos, "bitval"); auto bittest = m_builder.CreateTrunc(bitval, m_builder.getInt1Ty(), "bittest"); auto mask_ = m_builder.CreateShl(Constant::get(1), bitpos); auto mask = m_builder.CreateSub(mask_, Constant::get(1), "mask"); auto negmask = m_builder.CreateXor(mask, llvm::ConstantInt::getAllOnesValue(Type::Word), "negmask"); auto val1 = m_builder.CreateOr(word, negmask); auto val0 = m_builder.CreateAnd(word, mask); auto kInRange = m_builder.CreateICmpULE(idx, llvm::ConstantInt::get(Type::Word, 30)); auto result = m_builder.CreateSelect(kInRange, m_builder.CreateSelect(bittest, val1, val0), word); stack.push(result); break; } case Instruction::SHA3: { auto inOff = stack.pop(); auto inSize = stack.pop(); _memory.require(inOff, inSize); auto hash = _ext.sha3(inOff, inSize); stack.push(hash); break; } case Instruction::POP: { auto val = stack.pop(); static_cast(val); // Generate a dummy use of val to make sure that a get(0) will be emitted at this point, // so that StackTooSmall will be thrown // m_builder.CreateICmpEQ(val, val, "dummy"); break; } case Instruction::ANY_PUSH: { auto curr = _bytecode.begin() + currentPC; // TODO: replace currentPC with iterator auto value = readPushData(curr, _bytecode.end()); currentPC = curr - _bytecode.begin(); stack.push(Constant::get(value)); break; } case Instruction::ANY_DUP: { auto index = static_cast(inst) - static_cast(Instruction::DUP1); stack.dup(index); break; } case Instruction::ANY_SWAP: { auto index = static_cast(inst) - static_cast(Instruction::SWAP1) + 1; stack.swap(index); break; } case Instruction::MLOAD: { auto addr = stack.pop(); auto word = _memory.loadWord(addr); stack.push(word); break; } case Instruction::MSTORE: { auto addr = stack.pop(); auto word = stack.pop(); _memory.storeWord(addr, word); break; } case Instruction::MSTORE8: { auto addr = stack.pop(); auto word = stack.pop(); _memory.storeByte(addr, word); break; } case Instruction::MSIZE: { auto word = _memory.getSize(); stack.push(word); break; } case Instruction::SLOAD: { auto index = stack.pop(); auto value = _ext.store(index); stack.push(value); break; } case Instruction::SSTORE: { auto index = stack.pop(); auto value = stack.pop(); _gasMeter.countSStore(_ext, index, value); _ext.setStore(index, value); break; } case Instruction::JUMP: case Instruction::JUMPI: { // Generate direct jump iff: // 1. this is not the first instruction in the block // 2. m_directJumpTargets[currentPC] is defined (meaning that the previous instruction is a PUSH) // Otherwise generate a indirect jump (a switch). llvm::BasicBlock* targetBlock = nullptr; if (currentPC != _basicBlock.begin()) { auto pairIter = m_directJumpTargets.find(currentPC); if (pairIter != m_directJumpTargets.end()) targetBlock = pairIter->second; } if (inst == Instruction::JUMP) { if (targetBlock) { // The target address is computed at compile time, // just pop it without looking... stack.pop(); m_builder.CreateBr(targetBlock); } else m_builder.CreateBr(m_jumpTableBlock->llvm()); } else // JUMPI { stack.swap(1); auto val = stack.pop(); auto zero = Constant::get(0); auto cond = m_builder.CreateICmpNE(val, zero, "nonzero"); if (targetBlock) { stack.pop(); m_builder.CreateCondBr(cond, targetBlock, _nextBasicBlock); } else m_builder.CreateCondBr(cond, m_jumpTableBlock->llvm(), _nextBasicBlock); } break; } case Instruction::JUMPDEST: { // Nothing to do break; } case Instruction::PC: { auto value = Constant::get(currentPC); stack.push(value); break; } case Instruction::GAS: case Instruction::ADDRESS: case Instruction::CALLER: case Instruction::ORIGIN: case Instruction::CALLVALUE: case Instruction::CALLDATASIZE: case Instruction::CODESIZE: case Instruction::GASPRICE: case Instruction::PREVHASH: case Instruction::COINBASE: case Instruction::TIMESTAMP: case Instruction::NUMBER: case Instruction::DIFFICULTY: case Instruction::GASLIMIT: { // Pushes an element of runtime data on stack stack.push(_runtimeManager.get(inst)); break; } case Instruction::BALANCE: { auto address = stack.pop(); auto value = _ext.balance(address); stack.push(value); break; } case Instruction::EXTCODESIZE: { auto addr = stack.pop(); auto value = _ext.codesizeAt(addr); stack.push(value); break; } case Instruction::CALLDATACOPY: { auto destMemIdx = stack.pop(); auto srcIdx = stack.pop(); auto reqBytes = stack.pop(); auto srcPtr = _runtimeManager.getCallData(); auto srcSize = _runtimeManager.get(RuntimeData::CallDataSize); _memory.copyBytes(srcPtr, srcSize, srcIdx, destMemIdx, reqBytes); break; } case Instruction::CODECOPY: { auto destMemIdx = stack.pop(); auto srcIdx = stack.pop(); auto reqBytes = stack.pop(); auto srcPtr = _runtimeManager.getCode(); // TODO: Code & its size are constants, feature #80814234 auto srcSize = _runtimeManager.get(RuntimeData::CodeSize); _memory.copyBytes(srcPtr, srcSize, srcIdx, destMemIdx, reqBytes); break; } case Instruction::EXTCODECOPY: { auto extAddr = stack.pop(); auto destMemIdx = stack.pop(); auto srcIdx = stack.pop(); auto reqBytes = stack.pop(); auto srcPtr = _ext.codeAt(extAddr); auto srcSize = _ext.codesizeAt(extAddr); _memory.copyBytes(srcPtr, srcSize, srcIdx, destMemIdx, reqBytes); break; } case Instruction::CALLDATALOAD: { auto index = stack.pop(); auto value = _ext.calldataload(index); stack.push(value); break; } case Instruction::CREATE: { auto endowment = stack.pop(); auto initOff = stack.pop(); auto initSize = stack.pop(); _memory.require(initOff, initSize); auto address = _ext.create(endowment, initOff, initSize); stack.push(address); break; } case Instruction::CALL: case Instruction::CALLCODE: { auto gas = stack.pop(); auto codeAddress = stack.pop(); auto value = stack.pop(); auto inOff = stack.pop(); auto inSize = stack.pop(); auto outOff = stack.pop(); auto outSize = stack.pop(); _gasMeter.commitCostBlock(gas); // Require memory for in and out buffers _memory.require(outOff, outSize); // Out buffer first as we guess it will be after the in one _memory.require(inOff, inSize); auto receiveAddress = codeAddress; if (inst == Instruction::CALLCODE) receiveAddress = _runtimeManager.get(RuntimeData::Address); auto ret = _ext.call(gas, receiveAddress, value, inOff, inSize, outOff, outSize, codeAddress); _gasMeter.giveBack(gas); stack.push(ret); break; } case Instruction::RETURN: { auto index = stack.pop(); auto size = stack.pop(); _memory.require(index, size); _runtimeManager.registerReturnData(index, size); m_builder.CreateRet(Constant::get(ReturnCode::Return)); break; } case Instruction::SUICIDE: case Instruction::STOP: { if (inst == Instruction::SUICIDE) { auto address = stack.pop(); _ext.suicide(address); } m_builder.CreateRet(Constant::get(ReturnCode::Stop)); break; } case Instruction::LOG0: case Instruction::LOG1: case Instruction::LOG2: case Instruction::LOG3: case Instruction::LOG4: { auto beginIdx = stack.pop(); auto numBytes = stack.pop(); _memory.require(beginIdx, numBytes); // This will commit the current cost block _gasMeter.countLogData(numBytes); std::array topics; auto numTopics = static_cast(inst) - static_cast(Instruction::LOG0); for (size_t i = 0; i < numTopics; ++i) topics[i] = stack.pop(); _ext.log(beginIdx, numBytes, numTopics, topics); break; } default: // Invalid instruction - runtime exception { _runtimeManager.raiseException(ReturnCode::BadInstruction); } } } _gasMeter.commitCostBlock(); // Block may have no terminator if the next instruction is a jump destination. if (!_basicBlock.llvm()->getTerminator()) m_builder.CreateBr(_nextBasicBlock); } void Compiler::removeDeadBlocks() { // Remove dead basic blocks auto sthErased = false; do { sthErased = false; for (auto it = basicBlocks.begin(); it != basicBlocks.end();) { auto llvmBB = it->second.llvm(); if (llvm::pred_begin(llvmBB) == llvm::pred_end(llvmBB)) { llvmBB->eraseFromParent(); basicBlocks.erase(it++); sthErased = true; } else ++it; } } while (sthErased); // Remove jump table block if no predecessors if (llvm::pred_begin(m_jumpTableBlock->llvm()) == llvm::pred_end(m_jumpTableBlock->llvm())) { m_jumpTableBlock->llvm()->eraseFromParent(); m_jumpTableBlock.reset(); } } void Compiler::dumpCFGifRequired(std::string const& _dotfilePath) { if (! m_options.dumpCFG) return; // TODO: handle i/o failures std::ofstream ofs(_dotfilePath); dumpCFGtoStream(ofs); ofs.close(); } void Compiler::dumpCFGtoStream(std::ostream& _out) { _out << "digraph BB {\n" << " node [shape=record, fontname=Courier, fontsize=10];\n" << " entry [share=record, label=\"entry block\"];\n"; std::vector blocks; for (auto& pair : basicBlocks) blocks.push_back(&pair.second); if (m_jumpTableBlock) blocks.push_back(m_jumpTableBlock.get()); if (m_badJumpBlock) blocks.push_back(m_badJumpBlock.get()); // std::map phiNodesPerBlock; // Output nodes for (auto bb : blocks) { std::string blockName = bb->llvm()->getName(); std::ostringstream oss; bb->dump(oss, true); _out << " \"" << blockName << "\" [shape=record, label=\" { " << blockName << "|" << oss.str() << "} \"];\n"; } // Output edges for (auto bb : blocks) { std::string blockName = bb->llvm()->getName(); auto end = llvm::pred_end(bb->llvm()); for (llvm::pred_iterator it = llvm::pred_begin(bb->llvm()); it != end; ++it) { _out << " \"" << (*it)->getName().str() << "\" -> \"" << blockName << "\" [" << ((m_jumpTableBlock.get() && *it == m_jumpTableBlock.get()->llvm()) ? "style = dashed, " : "") << "];\n"; } } _out << "}\n"; } void Compiler::dump() { for (auto& entry : basicBlocks) entry.second.dump(); if (m_jumpTableBlock != nullptr) m_jumpTableBlock->dump(); } } } }