/* This file is part of cpp-ethereum. cpp-ethereum is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. cpp-ethereum is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with cpp-ethereum. If not, see . */ /** @file BlockQueue.cpp * @author Gav Wood * @date 2014 */ #include "BlockQueue.h" #include #include #include #include #include #include "BlockChain.h" #include "VerifiedBlock.h" #include "State.h" using namespace std; using namespace dev; using namespace dev::eth; #ifdef _WIN32 const char* BlockQueueChannel::name() { return EthOrange "[]>"; } #else const char* BlockQueueChannel::name() { return EthOrange "▣┅▶"; } #endif const char* BlockQueueTraceChannel::name() { return EthOrange "▣ ▶"; } size_t const c_maxKnownCount = 100000; size_t const c_maxKnownSize = 128 * 1024 * 1024; size_t const c_maxUnknownCount = 100000; size_t const c_maxUnknownSize = 512 * 1024 * 1024; // Block size can be ~50kb BlockQueue::BlockQueue(): m_unknownSize(0), m_knownSize(0), m_unknownCount(0), m_knownCount(0) { // Allow some room for other activity unsigned verifierThreads = std::max(thread::hardware_concurrency(), 3U) - 2U; for (unsigned i = 0; i < verifierThreads; ++i) m_verifiers.emplace_back([=](){ setThreadName("verifier" + toString(i)); this->verifierBody(); }); } BlockQueue::~BlockQueue() { m_deleting = true; m_moreToVerify.notify_all(); for (auto& i: m_verifiers) i.join(); } void BlockQueue::clear() { WriteGuard l(m_lock); DEV_INVARIANT_CHECK; Guard l2(m_verification); m_readySet.clear(); m_drainingSet.clear(); m_verified.clear(); m_unverified.clear(); m_verifying.clear(); m_unknownSet.clear(); m_unknown.clear(); m_future.clear(); m_unknownSize = 0; m_unknownCount = 0; m_knownSize = 0; m_knownCount = 0; m_difficulty = 0; m_drainingDifficulty = 0; } void BlockQueue::verifierBody() { while (!m_deleting) { UnverifiedBlock work; { unique_lock l(m_verification); m_moreToVerify.wait(l, [&](){ return !m_unverified.empty() || m_deleting; }); if (m_deleting) return; swap(work, m_unverified.front()); m_unverified.pop_front(); BlockInfo bi; bi.setSha3Uncles(work.hash); bi.setParentHash(work.parentHash); m_verifying.emplace_back(move(bi)); } VerifiedBlock res; swap(work.block, res.blockData); try { res.verified = m_bc->verifyBlock(&res.blockData, m_onBad, ImportRequirements::InOrderChecks); } catch (...) { // bad block. // has to be this order as that's how invariants() assumes. WriteGuard l2(m_lock); unique_lock l(m_verification); m_readySet.erase(work.hash); m_knownBad.insert(work.hash); for (auto it = m_verifying.begin(); it != m_verifying.end(); ++it) if (it->verified.info.sha3Uncles() == work.hash) { m_verifying.erase(it); goto OK1; } cwarn << "BlockQueue missing our job: was there a GM?"; OK1:; drainVerified_WITH_BOTH_LOCKS(); continue; } bool ready = false; { WriteGuard l2(m_lock); unique_lock l(m_verification); if (!m_verifying.empty() && m_verifying.front().verified.info.sha3Uncles() == work.hash) { // we're next! m_verifying.pop_front(); if (m_knownBad.count(res.verified.info.parentHash())) { m_readySet.erase(res.verified.info.hash()); m_knownBad.insert(res.verified.info.hash()); } else m_verified.emplace_back(move(res)); drainVerified_WITH_BOTH_LOCKS(); ready = true; } else { for (auto& i: m_verifying) if (i.verified.info.sha3Uncles() == work.hash) { i = move(res); goto OK; } cwarn << "BlockQueue missing our job: was there a GM?"; OK:; } } if (ready) m_onReady(); } } void BlockQueue::drainVerified_WITH_BOTH_LOCKS() { while (!m_verifying.empty() && !m_verifying.front().blockData.empty()) { if (m_knownBad.count(m_verifying.front().verified.info.parentHash())) { m_readySet.erase(m_verifying.front().verified.info.hash()); m_knownBad.insert(m_verifying.front().verified.info.hash()); } else m_verified.emplace_back(move(m_verifying.front())); m_verifying.pop_front(); } } ImportResult BlockQueue::import(bytesConstRef _block, bool _isOurs) { clog(BlockQueueTraceChannel) << std::this_thread::get_id(); // Check if we already know this block. h256 h = BlockInfo::headerHashFromBlock(_block); clog(BlockQueueTraceChannel) << "Queuing block" << h << "for import..."; UpgradableGuard l(m_lock); if (m_readySet.count(h) || m_drainingSet.count(h) || m_unknownSet.count(h) || m_knownBad.count(h)) { // Already know about this one. clog(BlockQueueTraceChannel) << "Already known."; return ImportResult::AlreadyKnown; } BlockInfo bi; try { // TODO: quick verification of seal - will require BlockQueue to be templated on Sealer // VERIFY: populates from the block and checks the block is internally coherent. bi = m_bc->verifyBlock(_block, m_onBad, ImportRequirements::None).info; } catch (Exception const& _e) { cwarn << "Ignoring malformed block: " << diagnostic_information(_e); return ImportResult::Malformed; } clog(BlockQueueTraceChannel) << "Block" << h << "is" << bi.number() << "parent is" << bi.parentHash(); // Check block doesn't already exist first! if (m_bc->isKnown(h)) { cblockq << "Already known in chain."; return ImportResult::AlreadyInChain; } UpgradeGuard ul(l); DEV_INVARIANT_CHECK; // Check it's not in the future (void)_isOurs; if (bi.timestamp() > (u256)time(0)/* && !_isOurs*/) { m_future.insert(make_pair((unsigned)bi.timestamp(), make_pair(h, _block.toBytes()))); char buf[24]; time_t bit = (unsigned)bi.timestamp(); if (strftime(buf, 24, "%X", localtime(&bit)) == 0) buf[0] = '\0'; // empty if case strftime fails clog(BlockQueueTraceChannel) << "OK - queued for future [" << bi.timestamp() << "vs" << time(0) << "] - will wait until" << buf; m_unknownSize += _block.size(); m_unknownCount++; m_difficulty += bi.difficulty(); bool unknown = !m_readySet.count(bi.parentHash()) && !m_drainingSet.count(bi.parentHash()) && !m_bc->isKnown(bi.parentHash()); return unknown ? ImportResult::FutureTimeUnknown : ImportResult::FutureTimeKnown; } else { // We now know it. if (m_knownBad.count(bi.parentHash())) { m_knownBad.insert(bi.hash()); updateBad_WITH_LOCK(bi.hash()); // bad parent; this is bad too, note it as such return ImportResult::BadChain; } else if (!m_readySet.count(bi.parentHash()) && !m_drainingSet.count(bi.parentHash()) && !m_bc->isKnown(bi.parentHash())) { // We don't know the parent (yet) - queue it up for later. It'll get resent to us if we find out about its ancestry later on. clog(BlockQueueTraceChannel) << "OK - queued as unknown parent:" << bi.parentHash(); m_unknown.insert(make_pair(bi.parentHash(), make_pair(h, _block.toBytes()))); m_unknownSet.insert(h); m_unknownSize += _block.size(); m_difficulty += bi.difficulty(); m_unknownCount++; return ImportResult::UnknownParent; } else { // If valid, append to blocks. clog(BlockQueueTraceChannel) << "OK - ready for chain insertion."; DEV_GUARDED(m_verification) m_unverified.push_back(UnverifiedBlock { h, bi.parentHash(), _block.toBytes() }); m_moreToVerify.notify_one(); m_readySet.insert(h); m_knownSize += _block.size(); m_difficulty += bi.difficulty(); m_knownCount++; noteReady_WITH_LOCK(h); return ImportResult::Success; } } } void BlockQueue::updateBad_WITH_LOCK(h256 const& _bad) { DEV_INVARIANT_CHECK; DEV_GUARDED(m_verification) { collectUnknownBad_WITH_BOTH_LOCKS(_bad); bool moreBad = true; while (moreBad) { moreBad = false; std::deque oldVerified; swap(m_verified, oldVerified); for (auto& b: oldVerified) if (m_knownBad.count(b.verified.info.parentHash()) || m_knownBad.count(b.verified.info.hash())) { m_knownBad.insert(b.verified.info.hash()); m_readySet.erase(b.verified.info.hash()); collectUnknownBad_WITH_BOTH_LOCKS(b.verified.info.hash()); moreBad = true; } else m_verified.push_back(std::move(b)); std::deque oldUnverified; swap(m_unverified, oldUnverified); for (auto& b: oldUnverified) if (m_knownBad.count(b.parentHash) || m_knownBad.count(b.hash)) { m_knownBad.insert(b.hash); m_readySet.erase(b.hash); collectUnknownBad_WITH_BOTH_LOCKS(b.hash); moreBad = true; } else m_unverified.push_back(std::move(b)); std::deque oldVerifying; swap(m_verifying, oldVerifying); for (auto& b: oldVerifying) if (m_knownBad.count(b.verified.info.parentHash()) || m_knownBad.count(b.verified.info.sha3Uncles())) { h256 const& h = b.blockData.size() != 0 ? b.verified.info.hash() : b.verified.info.sha3Uncles(); m_knownBad.insert(h); m_readySet.erase(h); collectUnknownBad_WITH_BOTH_LOCKS(h); moreBad = true; } else m_verifying.push_back(std::move(b)); } } } void BlockQueue::collectUnknownBad_WITH_BOTH_LOCKS(h256 const& _bad) { list badQueue(1, _bad); while (!badQueue.empty()) { auto r = m_unknown.equal_range(badQueue.front()); badQueue.pop_front(); for (auto it = r.first; it != r.second; ++it) { m_unknownSize -= it->second.second.size(); m_unknownCount--; auto newBad = it->second.first; m_unknownSet.erase(newBad); m_knownBad.insert(newBad); badQueue.push_back(newBad); } m_unknown.erase(r.first, r.second); } } bool BlockQueue::doneDrain(h256s const& _bad) { WriteGuard l(m_lock); DEV_INVARIANT_CHECK; m_drainingSet.clear(); m_difficulty -= m_drainingDifficulty; m_drainingDifficulty = 0; if (_bad.size()) { // at least one of them was bad. m_knownBad += _bad; for (h256 const& b : _bad) updateBad_WITH_LOCK(b); } return !m_readySet.empty(); } void BlockQueue::tick() { vector> todo; { UpgradableGuard l(m_lock); if (m_future.empty()) return; cblockq << "Checking past-future blocks..."; unsigned t = time(0); if (t <= m_future.begin()->first) return; cblockq << "Past-future blocks ready."; { UpgradeGuard l2(l); DEV_INVARIANT_CHECK; auto end = m_future.lower_bound(t); for (auto i = m_future.begin(); i != end; ++i) { m_unknownSize -= i->second.second.size(); m_unknownCount--; todo.push_back(move(i->second)); } m_future.erase(m_future.begin(), end); } } cblockq << "Importing" << todo.size() << "past-future blocks."; for (auto const& b: todo) import(&b.second); } template T advanced(T _t, unsigned _n) { std::advance(_t, _n); return _t; } QueueStatus BlockQueue::blockStatus(h256 const& _h) const { ReadGuard l(m_lock); return m_readySet.count(_h) ? QueueStatus::Ready : m_drainingSet.count(_h) ? QueueStatus::Importing : m_unknownSet.count(_h) ? QueueStatus::UnknownParent : m_knownBad.count(_h) ? QueueStatus::Bad : QueueStatus::Unknown; } bool BlockQueue::knownFull() const { return m_knownSize > c_maxKnownSize || m_knownCount > c_maxKnownCount; } bool BlockQueue::unknownFull() const { return m_unknownSize > c_maxUnknownSize || m_unknownCount > c_maxUnknownCount; } void BlockQueue::drain(VerifiedBlocks& o_out, unsigned _max) { bool wasFull = false; DEV_WRITE_GUARDED(m_lock) { DEV_INVARIANT_CHECK; wasFull = knownFull(); if (m_drainingSet.empty()) { m_drainingDifficulty = 0; DEV_GUARDED(m_verification) { o_out.resize(min(_max, m_verified.size())); for (unsigned i = 0; i < o_out.size(); ++i) swap(o_out[i], m_verified[i]); m_verified.erase(m_verified.begin(), advanced(m_verified.begin(), o_out.size())); } for (auto const& bs: o_out) { // TODO: @optimise use map rather than vector & set. auto h = bs.verified.info.hash(); m_drainingSet.insert(h); m_drainingDifficulty += bs.verified.info.difficulty(); m_readySet.erase(h); m_knownSize -= bs.verified.block.size(); m_knownCount--; } } } if (wasFull && !knownFull()) m_onRoomAvailable(); } bool BlockQueue::invariants() const { Guard l(m_verification); if (!(m_readySet.size() == m_verified.size() + m_unverified.size() + m_verifying.size())) { std::stringstream s; s << "Failed BlockQueue invariant: m_readySet: " << m_readySet.size() << " m_verified: " << m_verified.size() << " m_unverified: " << m_unverified.size() << " m_verifying" << m_verifying.size(); BOOST_THROW_EXCEPTION(FailedInvariant() << errinfo_comment(s.str())); } return true; } void BlockQueue::noteReady_WITH_LOCK(h256 const& _good) { DEV_INVARIANT_CHECK; list goodQueue(1, _good); bool notify = false; while (!goodQueue.empty()) { auto r = m_unknown.equal_range(goodQueue.front()); goodQueue.pop_front(); for (auto it = r.first; it != r.second; ++it) { DEV_GUARDED(m_verification) m_unverified.push_back(UnverifiedBlock { it->second.first, it->first, it->second.second }); m_knownSize += it->second.second.size(); m_knownCount++; m_unknownSize -= it->second.second.size(); m_unknownCount--; auto newReady = it->second.first; m_unknownSet.erase(newReady); m_readySet.insert(newReady); goodQueue.push_back(newReady); notify = true; } m_unknown.erase(r.first, r.second); } if (notify) m_moreToVerify.notify_all(); } void BlockQueue::retryAllUnknown() { WriteGuard l(m_lock); DEV_INVARIANT_CHECK; for (auto it = m_unknown.begin(); it != m_unknown.end(); ++it) { DEV_GUARDED(m_verification) m_unverified.push_back(UnverifiedBlock { it->second.first, it->first, it->second.second }); auto newReady = it->second.first; m_unknownSet.erase(newReady); m_readySet.insert(newReady); m_knownCount++; m_moreToVerify.notify_one(); } m_unknown.clear(); m_knownSize += m_unknownSize; m_unknownSize = 0; m_unknownCount = 0; m_moreToVerify.notify_all(); } std::ostream& dev::eth::operator<<(std::ostream& _out, BlockQueueStatus const& _bqs) { _out << "importing: " << _bqs.importing << endl; _out << "verified: " << _bqs.verified << endl; _out << "verifying: " << _bqs.verifying << endl; _out << "unverified: " << _bqs.unverified << endl; _out << "future: " << _bqs.future << endl; _out << "unknown: " << _bqs.unknown << endl; _out << "bad: " << _bqs.bad << endl; return _out; } u256 BlockQueue::difficulty() const { UpgradableGuard l(m_lock); return m_difficulty; } bool BlockQueue::isActive() const { UpgradableGuard l(m_lock); if (m_readySet.empty() && m_drainingSet.empty()) DEV_GUARDED(m_verification) if (m_verified.empty() && m_verifying.empty() && m_unverified.empty()) return false; return true; }