/*
This file is part of cpp-ethereum.
cpp-ethereum is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
cpp-ethereum is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with cpp-ethereum. If not, see .
*/
/** @file Host.cpp
* @author Alex Leverington
* @author Gav Wood
* @date 2014
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "Session.h"
#include "Common.h"
#include "Capability.h"
#include "UPnP.h"
#include "RLPxHandshake.h"
#include "Host.h"
using namespace std;
using namespace dev;
using namespace dev::p2p;
/// Interval at which Host::run will call keepAlivePeers to ping peers.
std::chrono::seconds const c_keepAliveInterval = std::chrono::seconds(30);
/// Disconnect timeout after failure to respond to keepAlivePeers ping.
std::chrono::milliseconds const c_keepAliveTimeOut = std::chrono::milliseconds(1000);
HostNodeTableHandler::HostNodeTableHandler(Host& _host): m_host(_host) {}
void HostNodeTableHandler::processEvent(NodeId const& _n, NodeTableEventType const& _e)
{
m_host.onNodeTableEvent(_n, _e);
}
Host::Host(std::string const& _clientVersion, NetworkPreferences const& _n, bytesConstRef _restoreNetwork):
Worker("p2p", 0),
m_restoreNetwork(_restoreNetwork.toBytes()),
m_clientVersion(_clientVersion),
m_netPrefs(_n),
m_ifAddresses(Network::getInterfaceAddresses()),
m_ioService(2),
m_tcp4Acceptor(m_ioService),
m_alias(networkAlias(_restoreNetwork)),
m_lastPing(chrono::steady_clock::time_point::min())
{
clog(NetNote) << "Id:" << id();
}
Host::~Host()
{
stop();
}
void Host::start()
{
startWorking();
}
void Host::stop()
{
// called to force io_service to kill any remaining tasks it might have -
// such tasks may involve socket reads from Capabilities that maintain references
// to resources we're about to free.
{
// Although m_run is set by stop() or start(), it effects m_runTimer so x_runTimer is used instead of a mutex for m_run.
// when m_run == false, run() will cause this::run() to stop() ioservice
Guard l(x_runTimer);
// ignore if already stopped/stopping
if (!m_run)
return;
m_run = false;
}
// wait for m_timer to reset (indicating network scheduler has stopped)
while (!!m_timer)
this_thread::sleep_for(chrono::milliseconds(50));
// stop worker thread
stopWorking();
}
void Host::doneWorking()
{
// reset ioservice (allows manually polling network, below)
m_ioService.reset();
// shutdown acceptor
m_tcp4Acceptor.cancel();
if (m_tcp4Acceptor.is_open())
m_tcp4Acceptor.close();
// There maybe an incoming connection which started but hasn't finished.
// Wait for acceptor to end itself instead of assuming it's complete.
// This helps ensure a peer isn't stopped at the same time it's starting
// and that socket for pending connection is closed.
while (m_accepting)
m_ioService.poll();
// stop capabilities (eth: stops syncing or block/tx broadcast)
for (auto const& h: m_capabilities)
h.second->onStopping();
// disconnect pending handshake, before peers, as a handshake may create a peer
for (unsigned n = 0;; n = 0)
{
{
Guard l(x_connecting);
for (auto i: m_connecting)
if (auto h = i.lock())
{
h->cancel();
n++;
}
}
if (!n)
break;
m_ioService.poll();
}
// disconnect peers
for (unsigned n = 0;; n = 0)
{
{
RecursiveGuard l(x_sessions);
for (auto i: m_sessions)
if (auto p = i.second.lock())
if (p->isConnected())
{
p->disconnect(ClientQuit);
n++;
}
}
if (!n)
break;
// poll so that peers send out disconnect packets
m_ioService.poll();
}
// stop network (again; helpful to call before subsequent reset())
m_ioService.stop();
// reset network (allows reusing ioservice in future)
m_ioService.reset();
// finally, clear out peers (in case they're lingering)
RecursiveGuard l(x_sessions);
m_sessions.clear();
}
void Host::startPeerSession(Public const& _id, RLP const& _rlp, RLPXFrameIO* _io, bi::tcp::endpoint _endpoint)
{
shared_ptr p;
if (!m_peers.count(_id))
{
p.reset(new Peer());
p->id = _id;
}
else
p = m_peers[_id];
p->m_lastDisconnect = NoDisconnect;
if (p->isOffline())
p->m_lastConnected = std::chrono::system_clock::now();
p->m_failedAttempts = 0;
p->endpoint.tcp.address(_endpoint.address());
auto protocolVersion = _rlp[0].toInt();
auto clientVersion = _rlp[1].toString();
auto caps = _rlp[2].toVector();
auto listenPort = _rlp[3].toInt();
// clang error (previously: ... << hex << caps ...)
// "'operator<<' should be declared prior to the call site or in an associated namespace of one of its arguments"
stringstream capslog;
for (auto cap: caps)
capslog << "(" << cap.first << "," << dec << cap.second << ")";
clog(NetMessageSummary) << "Hello: " << clientVersion << "V[" << protocolVersion << "]" << _id.abridged() << showbase << capslog.str() << dec << listenPort;
// create session so disconnects are managed
auto ps = make_shared(this, _io, p, PeerSessionInfo({_id, clientVersion, _endpoint.address().to_string(), listenPort, chrono::steady_clock::duration(), _rlp[2].toSet(), 0, map()}));
if (protocolVersion != dev::p2p::c_protocolVersion)
{
ps->disconnect(IncompatibleProtocol);
return;
}
{
RecursiveGuard l(x_sessions);
if (m_sessions.count(_id) && !!m_sessions[_id].lock())
if (auto s = m_sessions[_id].lock())
if(s->isConnected())
{
// Already connected.
clog(NetWarn) << "Session already exists for peer with id" << _id.abridged();
ps->disconnect(DuplicatePeer);
return;
}
m_sessions[_id] = ps;
}
ps->start();
unsigned o = (unsigned)UserPacket;
for (auto const& i: caps)
if (haveCapability(i))
{
ps->m_capabilities[i] = shared_ptr(m_capabilities[i]->newPeerCapability(ps.get(), o));
o += m_capabilities[i]->messageCount();
}
clog(NetNote) << "p2p.host.peer.register" << _id.abridged();
StructuredLogger::p2pConnected(_id.abridged(), ps->m_peer->peerEndpoint(), ps->m_peer->m_lastConnected, clientVersion, peerCount());
}
void Host::onNodeTableEvent(NodeId const& _n, NodeTableEventType const& _e)
{
if (_e == NodeEntryAdded)
{
clog(NetNote) << "p2p.host.nodeTable.events.nodeEntryAdded " << _n;
auto n = m_nodeTable->node(_n);
if (n)
{
shared_ptr p;
{
RecursiveGuard l(x_sessions);
if (m_peers.count(_n))
p = m_peers[_n];
else
{
// TODO p2p: construct peer from node
p.reset(new Peer());
p->id = _n;
p->endpoint = NodeIPEndpoint(n.endpoint.udp, n.endpoint.tcp);
p->required = n.required;
m_peers[_n] = p;
clog(NetNote) << "p2p.host.peers.events.peersAdded " << _n << "udp:" << p->endpoint.udp.address() << "tcp:" << p->endpoint.tcp.address();
}
p->endpoint.tcp = n.endpoint.tcp;
}
// TODO: Implement similar to discover. Attempt connecting to nodes
// until ideal peer count is reached; if all nodes are tried,
// repeat. Notably, this is an integrated process such that
// when onNodeTableEvent occurs we should also update +/-
// the list of nodes to be tried. Thus:
// 1) externalize connection attempts
// 2) attempt copies potentialPeer list
// 3) replace this logic w/maintenance of potentialPeers
if (peerCount() < m_idealPeerCount)
connect(p);
}
}
else if (_e == NodeEntryDropped)
{
clog(NetNote) << "p2p.host.nodeTable.events.NodeEntryDropped " << _n;
RecursiveGuard l(x_sessions);
m_peers.erase(_n);
}
}
void Host::determinePublic()
{
// set m_tcpPublic := listenIP (if public) > public > upnp > unspecified address.
auto ifAddresses = Network::getInterfaceAddresses();
auto laddr = m_netPrefs.listenIPAddress.empty() ? bi::address() : bi::address::from_string(m_netPrefs.listenIPAddress);
auto lset = !laddr.is_unspecified();
auto paddr = m_netPrefs.publicIPAddress.empty() ? bi::address() : bi::address::from_string(m_netPrefs.publicIPAddress);
auto pset = !paddr.is_unspecified();
bool listenIsPublic = lset && isPublicAddress(laddr);
bool publicIsHost = !lset && pset && ifAddresses.count(paddr);
bi::tcp::endpoint ep(bi::address(), m_netPrefs.listenPort);
if (m_netPrefs.traverseNAT && listenIsPublic)
{
clog(NetNote) << "Listen address set to Public address:" << laddr << ". UPnP disabled.";
ep.address(laddr);
}
else if (m_netPrefs.traverseNAT && publicIsHost)
{
clog(NetNote) << "Public address set to Host configured address:" << paddr << ". UPnP disabled.";
ep.address(paddr);
}
else if (m_netPrefs.traverseNAT)
{
bi::address natIFAddr;
ep = Network::traverseNAT(lset && ifAddresses.count(laddr) ? std::set({laddr}) : ifAddresses, m_netPrefs.listenPort, natIFAddr);
if (lset && natIFAddr != laddr)
// if listen address is set, Host will use it, even if upnp returns different
clog(NetWarn) << "Listen address" << laddr << "differs from local address" << natIFAddr << "returned by UPnP!";
if (pset && ep.address() != paddr)
{
// if public address is set, Host will advertise it, even if upnp returns different
clog(NetWarn) << "Specified public address" << paddr << "differs from external address" << ep.address() << "returned by UPnP!";
ep.address(paddr);
}
}
else if (pset)
ep.address(paddr);
m_tcpPublic = ep;
}
void Host::runAcceptor()
{
assert(m_listenPort > 0);
if (m_run && !m_accepting)
{
clog(NetConnect) << "Listening on local port " << m_listenPort << " (public: " << m_tcpPublic << ")";
m_accepting = true;
auto socket = make_shared(new bi::tcp::socket(m_ioService));
m_tcp4Acceptor.async_accept(socket->ref(), [=](boost::system::error_code ec)
{
// if no error code
bool success = false;
if (!ec)
{
try
{
// incoming connection; we don't yet know nodeid
auto handshake = make_shared(this, socket);
m_connecting.push_back(handshake);
handshake->start();
success = true;
}
catch (Exception const& _e)
{
clog(NetWarn) << "ERROR: " << diagnostic_information(_e);
}
catch (std::exception const& _e)
{
clog(NetWarn) << "ERROR: " << _e.what();
}
}
if (!success)
socket->ref().close();
m_accepting = false;
if (ec.value() < 1)
runAcceptor();
});
}
}
string Host::pocHost()
{
vector strs;
boost::split(strs, dev::Version, boost::is_any_of("."));
return "poc-" + strs[1] + ".ethdev.com";
}
void Host::addNode(NodeId const& _node, bi::address const& _addr, unsigned short _udpNodePort, unsigned short _tcpPeerPort)
{
// TODO: p2p clean this up (bring tested acceptor code over from network branch)
while (isWorking() && !m_run)
this_thread::sleep_for(chrono::milliseconds(50));
if (!m_run)
return;
if (_tcpPeerPort < 30300 || _tcpPeerPort > 30305)
cwarn << "Non-standard port being recorded: " << _tcpPeerPort;
if (_tcpPeerPort >= /*49152*/32768)
{
cwarn << "Private port being recorded - setting to 0";
_tcpPeerPort = 0;
}
if (m_nodeTable)
m_nodeTable->addNode(Node(_node, NodeIPEndpoint(bi::udp::endpoint(_addr, _udpNodePort), bi::tcp::endpoint(_addr, _tcpPeerPort))));
}
void Host::requirePeer(NodeId const& _n, bi::address const& _udpAddr, unsigned short _udpPort, bi::address const& _tcpAddr, unsigned short _tcpPort)
{
auto naddr = _udpAddr;
auto paddr = _tcpAddr.is_unspecified() ? naddr : _tcpAddr;
auto udp = bi::udp::endpoint(naddr, _udpPort);
auto tcp = bi::tcp::endpoint(paddr, _tcpPort ? _tcpPort : _udpPort);
Node node(_n, NodeIPEndpoint(udp, tcp));
if (_n)
{
// add or replace peer
shared_ptr p;
{
RecursiveGuard l(x_sessions);
if (m_peers.count(_n))
p = m_peers[_n];
else
{
p.reset(new Peer());
p->id = _n;
p->required = true;
m_peers[_n] = p;
}
p->endpoint.udp = node.endpoint.udp;
p->endpoint.tcp = node.endpoint.tcp;
}
connect(p);
}
else if (m_nodeTable)
{
shared_ptr t(new boost::asio::deadline_timer(m_ioService));
m_timers.push_back(t);
m_nodeTable->addNode(node);
t->expires_from_now(boost::posix_time::milliseconds(600));
t->async_wait([this, _n](boost::system::error_code const& _ec)
{
if (!_ec && m_nodeTable)
if (auto n = m_nodeTable->node(_n))
requirePeer(n.id, n.endpoint.udp.address(), n.endpoint.udp.port(), n.endpoint.tcp.address(), n.endpoint.tcp.port());
});
}
}
void Host::relinquishPeer(NodeId const& _node)
{
Guard l(x_requiredPeers);
if (m_requiredPeers.count(_node))
m_requiredPeers.erase(_node);
}
void Host::connect(std::shared_ptr const& _p)
{
if (!m_run)
return;
_p->m_lastAttempted = std::chrono::system_clock::now();
if (havePeerSession(_p->id))
{
clog(NetConnect) << "Aborted connect. Node already connected.";
return;
}
if (!m_nodeTable->haveNode(_p->id))
{
clog(NetWarn) << "Aborted connect. Node not in node table.";
m_nodeTable->addNode(*_p.get());
return;
}
// prevent concurrently connecting to a node
Peer *nptr = _p.get();
{
Guard l(x_pendingNodeConns);
if (m_pendingPeerConns.count(nptr))
return;
m_pendingPeerConns.insert(nptr);
}
clog(NetConnect) << "Attempting connection to node" << _p->id.abridged() << "@" << _p->peerEndpoint() << "from" << id().abridged();
auto socket = make_shared(new bi::tcp::socket(m_ioService));
socket->ref().async_connect(_p->peerEndpoint(), [=](boost::system::error_code const& ec)
{
if (ec)
{
clog(NetConnect) << "Connection refused to node" << _p->id.abridged() << "@" << _p->peerEndpoint() << "(" << ec.message() << ")";
_p->m_lastDisconnect = TCPError;
_p->m_lastAttempted = std::chrono::system_clock::now();
_p->m_failedAttempts++;
}
else
{
clog(NetConnect) << "Connecting to" << _p->id.abridged() << "@" << _p->peerEndpoint();
auto handshake = make_shared(this, socket, _p->id);
{
Guard l(x_connecting);
m_connecting.push_back(handshake);
}
// preempt setting failedAttempts; this value is cleared upon success
_p->m_failedAttempts++;
handshake->start();
}
Guard l(x_pendingNodeConns);
m_pendingPeerConns.erase(nptr);
});
}
PeerSessionInfos Host::peerSessionInfo() const
{
if (!m_run)
return PeerSessionInfos();
std::vector ret;
RecursiveGuard l(x_sessions);
for (auto& i: m_sessions)
if (auto j = i.second.lock())
if (j->isConnected())
ret.push_back(j->m_info);
return ret;
}
size_t Host::peerCount() const
{
unsigned retCount = 0;
RecursiveGuard l(x_sessions);
for (auto& i: m_sessions)
if (std::shared_ptr j = i.second.lock())
if (j->isConnected())
retCount++;
return retCount;
}
void Host::run(boost::system::error_code const&)
{
if (!m_run)
{
// reset NodeTable
m_nodeTable.reset();
// stopping io service allows running manual network operations for shutdown
// and also stops blocking worker thread, allowing worker thread to exit
m_ioService.stop();
// resetting timer signals network that nothing else can be scheduled to run
m_timer.reset();
return;
}
m_nodeTable->processEvents();
// cleanup zombies
{
Guard l(x_connecting);
m_connecting.remove_if([](std::weak_ptr h){ return h.lock(); });
}
{
Guard l(x_timers);
m_timers.remove_if([](std::shared_ptr t)
{
return t->expires_from_now().total_milliseconds() > 0;
});
}
for (auto p: m_sessions)
if (auto pp = p.second.lock())
pp->serviceNodesRequest();
keepAlivePeers();
// At this time peers will be disconnected based on natural TCP timeout.
// disconnectLatePeers needs to be updated for the assumption that Session
// is always live and to ensure reputation and fallback timers are properly
// updated. // disconnectLatePeers();
auto openSlots = m_idealPeerCount - peerCount();
if (openSlots > 0)
{
list> toConnect;
{
RecursiveGuard l(x_sessions);
for (auto p: m_peers)
if (p.second->shouldReconnect() && !havePeerSession(p.second->id))
toConnect.push_back(p.second);
}
for (auto p: toConnect)
if (openSlots--)
connect(p);
else
break;
m_nodeTable->discover();
}
auto runcb = [this](boost::system::error_code const& error) { run(error); };
m_timer->expires_from_now(boost::posix_time::milliseconds(c_timerInterval));
m_timer->async_wait(runcb);
}
void Host::startedWorking()
{
asserts(!m_timer);
{
// prevent m_run from being set to true at same time as set to false by stop()
// don't release mutex until m_timer is set so in case stop() is called at same
// time, stop will wait on m_timer and graceful network shutdown.
Guard l(x_runTimer);
// create deadline timer
m_timer.reset(new boost::asio::deadline_timer(m_ioService));
m_run = true;
}
// start capability threads (ready for incoming connections)
for (auto const& h: m_capabilities)
h.second->onStarting();
// try to open acceptor (todo: ipv6)
m_listenPort = Network::tcp4Listen(m_tcp4Acceptor, m_netPrefs);
// determine public IP, but only if we're able to listen for connections
// todo: GUI when listen is unavailable in UI
if (m_listenPort)
{
determinePublic();
if (m_listenPort > 0)
runAcceptor();
}
else
clog(NetNote) << "p2p.start.notice id:" << id().abridged() << "TCP Listen port is invalid or unavailable.";
m_nodeTable.reset(new NodeTable(m_ioService, m_alias, bi::address::from_string(listenAddress()), listenPort()));
m_nodeTable->setEventHandler(new HostNodeTableHandler(*this));
restoreNetwork(&m_restoreNetwork);
clog(NetNote) << "p2p.started id:" << id().abridged();
run(boost::system::error_code());
}
void Host::doWork()
{
if (m_run)
m_ioService.run();
}
void Host::keepAlivePeers()
{
if (chrono::steady_clock::now() - c_keepAliveInterval < m_lastPing)
return;
RecursiveGuard l(x_sessions);
for (auto p: m_sessions)
if (auto pp = p.second.lock())
pp->ping();
m_lastPing = chrono::steady_clock::now();
}
void Host::disconnectLatePeers()
{
auto now = chrono::steady_clock::now();
if (now - c_keepAliveTimeOut < m_lastPing)
return;
RecursiveGuard l(x_sessions);
for (auto p: m_sessions)
if (auto pp = p.second.lock())
if (now - c_keepAliveTimeOut > m_lastPing && pp->m_lastReceived < m_lastPing)
pp->disconnect(PingTimeout);
}
bytes Host::saveNetwork() const
{
if (!m_nodeTable)
return bytes();
std::list peers;
{
RecursiveGuard l(x_sessions);
for (auto p: m_peers)
if (p.second)
peers.push_back(*p.second);
}
peers.sort();
RLPStream network;
int count = 0;
{
RecursiveGuard l(x_sessions);
for (auto const& p: peers)
{
// TODO: alpha: Figure out why it ever shares these ports.//p.address.port() >= 30300 && p.address.port() <= 30305 &&
// TODO: alpha: if/how to save private addresses
// Only save peers which have connected within 2 days, with properly-advertised port and public IP address
if (chrono::system_clock::now() - p.m_lastConnected < chrono::seconds(3600 * 48) && p.peerEndpoint().port() > 0 && p.peerEndpoint().port() < /*49152*/32768 && p.id != id() && !isPrivateAddress(p.endpoint.udp.address()) && !isPrivateAddress(p.endpoint.tcp.address()))
{
network.appendList(10);
if (p.peerEndpoint().address().is_v4())
network << p.peerEndpoint().address().to_v4().to_bytes();
else
network << p.peerEndpoint().address().to_v6().to_bytes();
// TODO: alpha: replace 0 with trust-state of node
network << p.peerEndpoint().port() << p.id << 0
<< chrono::duration_cast(p.m_lastConnected.time_since_epoch()).count()
<< chrono::duration_cast(p.m_lastAttempted.time_since_epoch()).count()
<< p.m_failedAttempts << (unsigned)p.m_lastDisconnect << p.m_score << p.m_rating;
count++;
}
}
}
if (!!m_nodeTable)
{
auto state = m_nodeTable->snapshot();
state.sort();
for (auto const& s: state)
{
network.appendList(3);
if (s.endpoint.tcp.address().is_v4())
network << s.endpoint.tcp.address().to_v4().to_bytes();
else
network << s.endpoint.tcp.address().to_v6().to_bytes();
network << s.endpoint.tcp.port() << s.id;
count++;
}
}
RLPStream ret(3);
ret << dev::p2p::c_protocolVersion << m_alias.secret();
ret.appendList(count).appendRaw(network.out(), count);
return ret.out();
}
void Host::restoreNetwork(bytesConstRef _b)
{
// nodes can only be added if network is added
if (!isStarted())
BOOST_THROW_EXCEPTION(NetworkStartRequired());
if (m_dropPeers)
return;
RecursiveGuard l(x_sessions);
RLP r(_b);
if (r.itemCount() > 0 && r[0].isInt() && r[0].toInt() == dev::p2p::c_protocolVersion)
{
// r[0] = version
// r[1] = key
// r[2] = nodes
for (auto i: r[2])
{
bi::tcp::endpoint tcp;
bi::udp::endpoint udp;
if (i[0].itemCount() == 4)
{
tcp = bi::tcp::endpoint(bi::address_v4(i[0].toArray()), i[1].toInt());
udp = bi::udp::endpoint(bi::address_v4(i[0].toArray()), i[1].toInt());
}
else
{
tcp = bi::tcp::endpoint(bi::address_v6(i[0].toArray()), i[1].toInt());
udp = bi::udp::endpoint(bi::address_v6(i[0].toArray()), i[1].toInt());
}
// skip private addresses
// todo: to support private addresseses entries must be stored
// and managed externally by host rather than nodetable.
if (isPrivateAddress(tcp.address()) || isPrivateAddress(udp.address()))
continue;
auto id = (NodeId)i[2];
if (i.itemCount() == 3)
m_nodeTable->addNode(id, udp, tcp);
else if (i.itemCount() == 10)
{
shared_ptr p = make_shared();
p->id = id;
p->m_lastConnected = chrono::system_clock::time_point(chrono::seconds(i[4].toInt()));
p->m_lastAttempted = chrono::system_clock::time_point(chrono::seconds(i[5].toInt()));
p->m_failedAttempts = i[6].toInt();
p->m_lastDisconnect = (DisconnectReason)i[7].toInt();
p->m_score = (int)i[8].toInt();
p->m_rating = (int)i[9].toInt();
p->endpoint.tcp = tcp;
p->endpoint.udp = udp;
m_peers[p->id] = p;
m_nodeTable->addNode(*p.get());
}
}
}
}
KeyPair Host::networkAlias(bytesConstRef _b)
{
RLP r(_b);
if (r.itemCount() == 3 && r[0].isInt() && r[0].toInt() == 1)
return move(KeyPair(move(Secret(r[1].toBytes()))));
else
return move(KeyPair::create());
}