/*
This file is part of c-ethash.
c-ethash is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
c-ethash is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with cpp-ethereum. If not, see .
*/
/** @file ethash_cuda_miner.cpp
* @author Genoil
* @date 2015
*/
#define _CRT_SECURE_NO_WARNINGS
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "ethash_cuda_miner.h"
#include "ethash_cuda_miner_kernel_globals.h"
#define ETHASH_BYTES 32
// workaround lame platforms
#undef min
#undef max
using namespace std;
unsigned const ethash_cuda_miner::c_defaultBlockSize = 128;
unsigned const ethash_cuda_miner::c_defaultGridSize = 8192; // * CL_DEFAULT_LOCAL_WORK_SIZE
unsigned const ethash_cuda_miner::c_defaultNumStreams = 2;
#if defined(_WIN32)
extern "C" __declspec(dllimport) void __stdcall OutputDebugStringA(const char* lpOutputString);
static std::atomic_flag s_logSpin = ATOMIC_FLAG_INIT;
#define ETHCUDA_LOG(_contents) \
do \
{ \
std::stringstream ss; \
ss << _contents; \
while (s_logSpin.test_and_set(std::memory_order_acquire)) {} \
OutputDebugStringA(ss.str().c_str()); \
cout << ss.str() << endl << flush; \
s_logSpin.clear(std::memory_order_release); \
} while (false)
#else
#define ETHCUDA_LOG(_contents) cout << "[CUDA]:" << _contents << endl
#endif
ethash_cuda_miner::search_hook::~search_hook() {}
ethash_cuda_miner::ethash_cuda_miner()
{
}
std::string ethash_cuda_miner::platform_info(unsigned _deviceId)
{
int runtime_version;
int device_count;
device_count = getNumDevices();
if (device_count == 0)
return std::string();
CUDA_SAFE_CALL(cudaRuntimeGetVersion(&runtime_version));
// use selected default device
int device_num = std::min((int)_deviceId, device_count - 1);
cudaDeviceProp device_props;
CUDA_SAFE_CALL(cudaGetDeviceProperties(&device_props, device_num));
char platform[5];
int version_major = runtime_version / 1000;
int version_minor = (runtime_version - (version_major * 1000)) / 10;
sprintf(platform, "%d.%d", version_major, version_minor);
char compute[5];
sprintf(compute, "%d.%d", device_props.major, device_props.minor);
return "{ \"platform\": \"CUDA " + std::string(platform) + "\", \"device\": \"" + std::string(device_props.name) + "\", \"version\": \"Compute " + std::string(compute) + "\" }";
}
unsigned ethash_cuda_miner::getNumDevices()
{
int device_count;
CUDA_SAFE_CALL(cudaGetDeviceCount(&device_count));
return device_count;
}
bool ethash_cuda_miner::configureGPU(
int * _devices,
unsigned _blockSize,
unsigned _gridSize,
unsigned _numStreams,
unsigned _extraGPUMemory,
unsigned _scheduleFlag,
uint64_t _currentBlock
)
{
try
{
s_blockSize = _blockSize;
s_gridSize = _gridSize;
s_extraRequiredGPUMem = _extraGPUMemory;
s_numStreams = _numStreams;
s_scheduleFlag = _scheduleFlag;
ETHCUDA_LOG(
"Using grid size " << s_gridSize << ", block size " << s_blockSize << endl
);
// by default let's only consider the DAG of the first epoch
uint64_t dagSize = ethash_get_datasize(_currentBlock);
uint64_t requiredSize = dagSize + _extraGPUMemory;
unsigned devicesCount = getNumDevices();
for (unsigned int i = 0; i < devicesCount; i++)
{
if (_devices[i] != -1)
{
int deviceId = min((int)devicesCount - 1, _devices[i]);
cudaDeviceProp props;
CUDA_SAFE_CALL(cudaGetDeviceProperties(&props, deviceId));
if (props.totalGlobalMem >= requiredSize)
{
ETHCUDA_LOG(
"Found suitable CUDA device [" << string(props.name)
<< "] with " << props.totalGlobalMem << " bytes of GPU memory"
);
}
else
{
ETHCUDA_LOG(
"CUDA device " << string(props.name)
<< " has insufficient GPU memory." << to_string(props.totalGlobalMem) <<
" bytes of memory found < " << to_string(requiredSize) << " bytes of memory required"
);
return false;
}
}
}
return true;
}
catch (runtime_error)
{
return false;
}
}
unsigned ethash_cuda_miner::s_extraRequiredGPUMem;
unsigned ethash_cuda_miner::s_blockSize = ethash_cuda_miner::c_defaultBlockSize;
unsigned ethash_cuda_miner::s_gridSize = ethash_cuda_miner::c_defaultGridSize;
unsigned ethash_cuda_miner::s_numStreams = ethash_cuda_miner::c_defaultNumStreams;
unsigned ethash_cuda_miner::s_scheduleFlag = 0;
void ethash_cuda_miner::listDevices()
{
string outString = "\nListing CUDA devices.\nFORMAT: [deviceID] deviceName\n";
for (unsigned int i = 0; i < getNumDevices(); i++)
{
cudaDeviceProp props;
CUDA_SAFE_CALL(cudaGetDeviceProperties(&props, i));
outString += "[" + to_string(i) + "] " + string(props.name) + "\n";
outString += "\tCompute version: " + to_string(props.major) + "." + to_string(props.minor) + "\n";
outString += "\tcudaDeviceProp::totalGlobalMem: " + to_string(props.totalGlobalMem) + "\n";
}
ETHCUDA_LOG(outString);
}
void ethash_cuda_miner::finish()
{
CUDA_SAFE_CALL(cudaDeviceReset());
}
bool ethash_cuda_miner::init(ethash_light_t _light, uint8_t const* _lightData, uint64_t _lightSize, unsigned _deviceId)
{
try
{
int device_count = getNumDevices();
if (device_count == 0)
return false;
// use selected device
int device_num = std::min((int)_deviceId, device_count - 1);
cudaDeviceProp device_props;
CUDA_SAFE_CALL(cudaGetDeviceProperties(&device_props, device_num));
cout << "Using device: " << device_props.name << " (Compute " << device_props.major << "." << device_props.minor << ")" << endl;
CUDA_SAFE_CALL(cudaSetDevice(device_num));
CUDA_SAFE_CALL(cudaDeviceReset());
CUDA_SAFE_CALL(cudaSetDeviceFlags(s_scheduleFlag));
CUDA_SAFE_CALL(cudaDeviceSetCacheConfig(cudaFuncCachePreferL1));
m_search_buf = new volatile uint32_t *[s_numStreams];
m_streams = new cudaStream_t[s_numStreams];
uint64_t dagSize = ethash_get_datasize(_light->block_number);
uint32_t dagSize128 = (unsigned)(dagSize / ETHASH_MIX_BYTES);
uint32_t lightSize64 = (unsigned)(_lightSize / sizeof(node));
// create buffer for cache
hash64_t * light;
CUDA_SAFE_CALL(cudaMalloc(reinterpret_cast(&light), _lightSize));
// copy dag to CPU.
CUDA_SAFE_CALL(cudaMemcpy(reinterpret_cast(light), _lightData, _lightSize, cudaMemcpyHostToDevice));
// create buffer for dag
hash128_t * dag;
CUDA_SAFE_CALL(cudaMalloc(reinterpret_cast(&dag), dagSize));
// copy dag to CPU.
//CUDA_SAFE_CALL(cudaMemcpy(reinterpret_cast(dag), _dag, _dagSize, cudaMemcpyHostToDevice));
// create mining buffers
for (unsigned i = 0; i != s_numStreams; ++i)
{
CUDA_SAFE_CALL(cudaMallocHost(&m_search_buf[i], SEARCH_RESULT_BUFFER_SIZE * sizeof(uint32_t)));
CUDA_SAFE_CALL(cudaStreamCreate(&m_streams[i]));
}
set_constants(dag, dagSize128, light, lightSize64);
memset(&m_current_header, 0, sizeof(hash32_t));
m_current_target = 0;
m_current_nonce = 0;
m_current_index = 0;
cout << "Generating DAG..." << endl;
ethash_generate_dag(dagSize, s_gridSize, s_blockSize, m_streams[0]);
return true;
}
catch (runtime_error)
{
return false;
}
}
void ethash_cuda_miner::search(uint8_t const* header, uint64_t target, search_hook& hook)
{
bool initialize = false;
bool exit = false;
if (memcmp(&m_current_header, header, sizeof(hash32_t)))
{
m_current_header = *reinterpret_cast(header);
set_header(m_current_header);
initialize = true;
}
if (m_current_target != target)
{
m_current_target = target;
set_target(m_current_target);
initialize = true;
}
if (initialize)
{
random_device engine;
m_current_nonce = uniform_int_distribution()(engine);
m_current_index = 0;
CUDA_SAFE_CALL(cudaDeviceSynchronize());
for (unsigned int i = 0; i < s_numStreams; i++)
m_search_buf[i][0] = 0;
}
uint64_t batch_size = s_gridSize * s_blockSize;
for (; !exit; m_current_index++, m_current_nonce += batch_size)
{
unsigned int stream_index = m_current_index % s_numStreams;
cudaStream_t stream = m_streams[stream_index];
volatile uint32_t* buffer = m_search_buf[stream_index];
uint32_t found_count = 0;
uint64_t nonces[SEARCH_RESULT_BUFFER_SIZE - 1];
uint64_t nonce_base = m_current_nonce - s_numStreams * batch_size;
if (m_current_index >= s_numStreams)
{
CUDA_SAFE_CALL(cudaStreamSynchronize(stream));
found_count = buffer[0];
if (found_count)
buffer[0] = 0;
for (unsigned int j = 0; j < found_count; j++)
nonces[j] = nonce_base + buffer[j + 1];
}
run_ethash_search(s_gridSize, s_blockSize, stream, buffer, m_current_nonce);
if (m_current_index >= s_numStreams)
{
exit = found_count && hook.found(nonces, found_count);
exit |= hook.searched(nonce_base, batch_size);
}
}
}