/* This file is part of cpp-ethereum. cpp-ethereum is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. cpp-ethereum is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with cpp-ethereum. If not, see . */ /** @file PeerNetwork.cpp * @authors: * Gav Wood * Eric Lombrozo * @date 2014 */ #include #ifdef _WIN32 // winsock is already included // #include #else #include #endif #include #include #include "Exceptions.h" #include "Common.h" #include "BlockChain.h" #include "BlockInfo.h" #include "TransactionQueue.h" #include "UPnP.h" #include "PeerNetwork.h" using namespace std; using namespace eth; #define clogS(X) eth::LogOutputStream(false) << "| " << std::setw(2) << m_socket.native_handle() << "] " static const int c_protocolVersion = 8; static const eth::uint c_maxHashes = 32; ///< Maximum number of hashes GetChain will ever send. static const eth::uint c_maxBlocks = 32; ///< Maximum number of blocks Blocks will ever send. BUG: if this gets too big (e.g. 2048) stuff starts going wrong. static const eth::uint c_maxBlocksAsk = 256; ///< Maximum number of blocks we ask to receive in Blocks (when using GetChain). // Addresses we will skip during network interface discovery // Use a vector as the list is small // Why this and not names? // Under MacOSX loopback (127.0.0.1) can be named lo0 and br0 are bridges (0.0.0.0) static const vector c_rejectAddresses = { {bi::address_v4::from_string("127.0.0.1")}, {bi::address_v6::from_string("::1")}, {bi::address_v4::from_string("0.0.0.0")}, {bi::address_v6::from_string("::")} }; // Helper function to determine if an address falls within one of the reserved ranges // For V4: // Class A "10.*", Class B "172.[16->31].*", Class C "192.168.*" // Not implemented yet for V6 bool eth::isPrivateAddress(bi::address _addressToCheck) { if (_addressToCheck.is_v4()) { bi::address_v4 v4Address = _addressToCheck.to_v4(); bi::address_v4::bytes_type bytesToCheck = v4Address.to_bytes(); if (bytesToCheck[0] == 10 || bytesToCheck[0] == 127) return true; if (bytesToCheck[0] == 172 && (bytesToCheck[1] >= 16 && bytesToCheck[1] <=31)) return true; if (bytesToCheck[0] == 192 && bytesToCheck[1] == 168) return true; } return false; } PeerSession::PeerSession(PeerServer* _s, bi::tcp::socket _socket, uint _rNId, bi::address _peerAddress, unsigned short _peerPort): m_server(_s), m_socket(std::move(_socket)), m_reqNetworkId(_rNId), m_listenPort(_peerPort), m_rating(0) { m_disconnect = std::chrono::steady_clock::time_point::max(); m_connect = std::chrono::steady_clock::now(); m_info = PeerInfo({"?", _peerAddress.to_string(), m_listenPort, std::chrono::steady_clock::duration(0)}); } PeerSession::~PeerSession() { m_socket.close(); } int PeerSession::protocolVersion() { return c_protocolVersion; } int PeerSession::networkId() { return 0; } bi::tcp::endpoint PeerSession::endpoint() const { if (m_socket.is_open()) try { return bi::tcp::endpoint(m_socket.remote_endpoint().address(), m_listenPort); } catch (...){} return bi::tcp::endpoint(); } static std::string reasonOf(int _r) { switch (_r) { case DisconnectRequested: return "Disconnect was requested."; case TCPError: return "Low-level TCP communication error."; case BadProtocol: return "Data format error."; case UselessPeer: return "Peer had no use for this node."; case TooManyPeers: return "Peer had too many connections."; case DuplicatePeer: return "Peer was already connected."; case WrongGenesis: return "Disagreement over genesis block."; case IncompatibleProtocol: return "Peer protocol versions are incompatible."; case ClientQuit: return "Peer is exiting."; default: return "Unknown reason."; } } // TODO: BUG! 256 -> work out why things start to break with big packet sizes -> g.t. ~370 blocks. bool PeerSession::interpret(RLP const& _r) { clogS(NetRight) << _r; switch (_r[0].toInt()) { case HelloPacket: { m_protocolVersion = _r[1].toInt(); m_networkId = _r[2].toInt(); auto clientVersion = _r[3].toString(); m_caps = _r[4].toInt(); m_listenPort = _r[5].toInt(); m_id = _r[6].toHash(); clogS(NetMessageSummary) << "Hello: " << clientVersion << "V[" << m_protocolVersion << "/" << m_networkId << "]" << m_id.abridged() << showbase << hex << m_caps << dec << m_listenPort; if (m_server->m_peers.count(m_id)) if (auto l = m_server->m_peers[m_id].lock()) if (l.get() != this && l->isOpen()) { // Already connected. cwarn << "Already have peer id" << m_id.abridged() << "at" << l->endpoint() << "rather than" << endpoint(); disconnect(DuplicatePeer); return false; } if (m_protocolVersion != c_protocolVersion || m_networkId != m_reqNetworkId || !m_id) { disconnect(IncompatibleProtocol); return false; } try { m_info = PeerInfo({clientVersion, m_socket.remote_endpoint().address().to_string(), m_listenPort, std::chrono::steady_clock::duration()}); } catch (...) { disconnect(BadProtocol); return false; } m_server->m_peers[m_id] = shared_from_this(); // Grab their block chain off them. { clogS(NetAllDetail) << "Want chain. Latest:" << m_server->m_latestBlockSent << ", number:" << m_server->m_chain->details(m_server->m_latestBlockSent).number; uint count = std::min(c_maxHashes, m_server->m_chain->details(m_server->m_latestBlockSent).number + 1); RLPStream s; prep(s).appendList(2 + count); s << GetChainPacket; auto h = m_server->m_latestBlockSent; for (uint i = 0; i < count; ++i, h = m_server->m_chain->details(h).parent) { clogS(NetAllDetail) << " " << i << ":" << h; s << h; } s << c_maxBlocksAsk; sealAndSend(s); s.clear(); prep(s).appendList(1); s << GetTransactionsPacket; sealAndSend(s); } break; } case DisconnectPacket: { string reason = "Unspecified"; if (_r[1].isInt()) reason = reasonOf(_r[1].toInt()); clogS(NetMessageSummary) << "Disconnect (reason: " << reason << ")"; if (m_socket.is_open()) clogS(NetNote) << "Closing " << m_socket.remote_endpoint(); else clogS(NetNote) << "Remote closed."; m_socket.close(); return false; } case PingPacket: { // clogS(NetMessageSummary) << "Ping"; RLPStream s; sealAndSend(prep(s).appendList(1) << PongPacket); break; } case PongPacket: m_info.lastPing = std::chrono::steady_clock::now() - m_ping; // clogS(NetMessageSummary) << "Latency: " << chrono::duration_cast(m_lastPing).count() << " ms"; break; case GetPeersPacket: { clogS(NetMessageSummary) << "GetPeers"; auto peers = m_server->potentialPeers(); RLPStream s; prep(s).appendList(peers.size() + 1); s << PeersPacket; for (auto i: peers) { clogS(NetMessageDetail) << "Sending peer " << asHex(i.first.ref().cropped(0, 4)) << i.second; s.appendList(3) << i.second.address().to_v4().to_bytes() << i.second.port() << i.first; } sealAndSend(s); break; } case PeersPacket: clogS(NetMessageSummary) << "Peers (" << dec << (_r.itemCount() - 1) << " entries)"; for (unsigned i = 1; i < _r.itemCount(); ++i) { bi::address_v4 peerAddress(_r[i][0].toArray()); auto ep = bi::tcp::endpoint(peerAddress, _r[i][1].toInt()); Public id = _r[i][2].toHash(); if (isPrivateAddress(peerAddress)) goto CONTINUE; clogS(NetAllDetail) << "Checking: " << ep << "(" << asHex(id.ref().cropped(0, 4)) << ")"; // check that it's not us or one we already know: if (id && (m_server->m_key.pub() == id || m_server->m_peers.count(id) || m_server->m_incomingPeers.count(id))) goto CONTINUE; // check that we're not already connected to addr: if (!ep.port()) goto CONTINUE; for (auto i: m_server->m_addresses) if (ep.address() == i && ep.port() == m_server->listenPort()) goto CONTINUE; for (auto i: m_server->m_peers) if (shared_ptr p = i.second.lock()) { clogS(NetAllDetail) << " ...against " << p->endpoint(); if (p->m_socket.is_open() && p->endpoint() == ep) goto CONTINUE; } for (auto i: m_server->m_incomingPeers) if (i.second.first == ep) goto CONTINUE; m_server->m_incomingPeers[id] = make_pair(ep, 0); m_server->m_freePeers.push_back(id); clogS(NetMessageDetail) << "New peer: " << ep << "(" << id << ")"; CONTINUE:; } break; case TransactionsPacket: if (m_server->m_mode == NodeMode::PeerServer) break; clogS(NetMessageSummary) << "Transactions (" << dec << (_r.itemCount() - 1) << " entries)"; m_rating += _r.itemCount() - 1; for (unsigned i = 1; i < _r.itemCount(); ++i) { m_server->m_incomingTransactions.push_back(_r[i].data().toBytes()); m_knownTransactions.insert(sha3(_r[i].data())); } break; case BlocksPacket: { if (m_server->m_mode == NodeMode::PeerServer) break; clogS(NetMessageSummary) << "Blocks (" << dec << (_r.itemCount() - 1) << " entries)"; unsigned used = 0; for (unsigned i = 1; i < _r.itemCount(); ++i) { auto h = sha3(_r[i].data()); if (!m_server->m_chain->details(h)) { m_server->m_incomingBlocks.push_back(_r[i].data().toBytes()); m_knownBlocks.insert(h); used++; } } m_rating += used; if (g_logVerbosity >= 3) for (unsigned i = 1; i < _r.itemCount(); ++i) { auto h = sha3(_r[i].data()); BlockInfo bi(_r[i].data()); if (!m_server->m_chain->details(bi.parentHash) && !m_knownBlocks.count(bi.parentHash)) clogS(NetMessageDetail) << "Unknown parent " << bi.parentHash << " of block " << h; else clogS(NetMessageDetail) << "Known parent " << bi.parentHash << " of block " << h; } if (used) // we received some - check if there's any more { RLPStream s; prep(s).appendList(3); s << GetChainPacket; s << sha3(_r[1].data()); s << c_maxBlocksAsk; sealAndSend(s); } break; } case GetChainPacket: { if (m_server->m_mode == NodeMode::PeerServer) break; clogS(NetMessageSummary) << "GetChain (" << (_r.itemCount() - 2) << " hashes, " << (_r[_r.itemCount() - 1].toInt()) << ")"; // ******************************************************************** // NEEDS FULL REWRITE! h256s parents; parents.reserve(_r.itemCount() - 2); for (unsigned i = 1; i < _r.itemCount() - 1; ++i) parents.push_back(_r[i].toHash()); if (_r.itemCount() == 2) break; // return 2048 block max. uint baseCount = (uint)min(_r[_r.itemCount() - 1].toInt(), c_maxBlocks); clogS(NetMessageSummary) << "GetChain (" << baseCount << " max, from " << parents.front() << " to " << parents.back() << ")"; for (auto parent: parents) { auto h = m_server->m_chain->currentHash(); h256 latest = m_server->m_chain->currentHash(); uint latestNumber = 0; uint parentNumber = 0; RLPStream s; if (m_server->m_chain->details(parent)) { latestNumber = m_server->m_chain->details(latest).number; parentNumber = m_server->m_chain->details(parent).number; uint count = min(latestNumber - parentNumber, baseCount); clogS(NetAllDetail) << "Requires " << dec << (latestNumber - parentNumber) << " blocks from " << latestNumber << " to " << parentNumber; clogS(NetAllDetail) << latest << " - " << parent; prep(s); s.appendList(1 + count) << BlocksPacket; uint endNumber = m_server->m_chain->details(parent).number; uint startNumber = endNumber + count; clogS(NetAllDetail) << "Sending " << dec << count << " blocks from " << startNumber << " to " << endNumber; uint n = latestNumber; for (; n > startNumber; n--, h = m_server->m_chain->details(h).parent) {} for (uint i = 0; i < count; ++i, --n, h = m_server->m_chain->details(h).parent) { if (h == parent || n == endNumber) { cwarn << "BUG! Couldn't create the reply for GetChain!"; return true; } clogS(NetAllDetail) << " " << dec << i << " " << h; s.appendRaw(m_server->m_chain->block(h)); } clogS(NetAllDetail) << "Parent: " << h; } else if (parent != parents.back()) continue; if (h != parent) { // not in the blockchain; if (parent == parents.back()) { // out of parents... clogS(NetAllDetail) << "GetChain failed; not in chain"; // No good - must have been on a different branch. s.clear(); prep(s).appendList(2) << NotInChainPacket << parents.back(); } else // still some parents left - try them. continue; } // send the packet (either Blocks or NotInChain) & exit. sealAndSend(s); break; // ******************************************************************** } break; } case NotInChainPacket: { if (m_server->m_mode == NodeMode::PeerServer) break; h256 noGood = _r[1].toHash(); clogS(NetMessageSummary) << "NotInChain (" << noGood << ")"; if (noGood == m_server->m_chain->genesisHash()) { clogS(NetWarn) << "Discordance over genesis block! Disconnect."; disconnect(WrongGenesis); } else { uint count = std::min(c_maxHashes, m_server->m_chain->details(noGood).number); RLPStream s; prep(s).appendList(2 + count); s << GetChainPacket; auto h = m_server->m_chain->details(noGood).parent; for (uint i = 0; i < count; ++i, h = m_server->m_chain->details(h).parent) s << h; s << c_maxBlocksAsk; sealAndSend(s); } break; } case GetTransactionsPacket: { if (m_server->m_mode == NodeMode::PeerServer) break; m_requireTransactions = true; break; } default: break; } return true; } void PeerSession::ping() { RLPStream s; sealAndSend(prep(s).appendList(1) << PingPacket); m_ping = std::chrono::steady_clock::now(); } RLPStream& PeerSession::prep(RLPStream& _s) { return _s.appendRaw(bytes(8, 0)); } void PeerServer::seal(bytes& _b) { _b[0] = 0x22; _b[1] = 0x40; _b[2] = 0x08; _b[3] = 0x91; uint32_t len = (uint32_t)_b.size() - 8; _b[4] = (len >> 24) & 0xff; _b[5] = (len >> 16) & 0xff; _b[6] = (len >> 8) & 0xff; _b[7] = len & 0xff; } void PeerSession::sealAndSend(RLPStream& _s) { bytes b; _s.swapOut(b); m_server->seal(b); sendDestroy(b); } bool PeerSession::checkPacket(bytesConstRef _msg) { if (_msg.size() < 8) return false; if (!(_msg[0] == 0x22 && _msg[1] == 0x40 && _msg[2] == 0x08 && _msg[3] == 0x91)) return false; uint32_t len = ((_msg[4] * 256 + _msg[5]) * 256 + _msg[6]) * 256 + _msg[7]; if (_msg.size() != len + 8) return false; RLP r(_msg.cropped(8)); if (r.actualSize() != len) return false; return true; } void PeerSession::sendDestroy(bytes& _msg) { clogS(NetLeft) << RLP(bytesConstRef(&_msg).cropped(8)); if (!checkPacket(bytesConstRef(&_msg))) { cwarn << "INVALID PACKET CONSTRUCTED!"; } auto self(shared_from_this()); bytes* buffer = new bytes(std::move(_msg)); ba::async_write(m_socket, ba::buffer(*buffer), [self,buffer](boost::system::error_code ec, std::size_t length) { delete buffer; if (ec) { cwarn << "Error sending: " << ec.message(); self->dropped(); } // cbug << length << " bytes written (EC: " << ec << ")"; }); } void PeerSession::send(bytesConstRef _msg) { clogS(NetLeft) << RLP(_msg.cropped(8)); if (!checkPacket(_msg)) { cwarn << "INVALID PACKET CONSTRUCTED!"; } auto self(shared_from_this()); bytes* buffer = new bytes(_msg.toBytes()); ba::async_write(m_socket, ba::buffer(*buffer), [self,buffer](boost::system::error_code ec, std::size_t length) { delete buffer; if (ec) { cwarn << "Error sending: " << ec.message(); self->dropped(); } // cbug << length << " bytes written (EC: " << ec << ")"; }); } void PeerSession::dropped() { if (m_socket.is_open()) try { clogS(NetNote) << "Closing " << m_socket.remote_endpoint(); m_socket.close(); }catch (...){} for (auto i = m_server->m_peers.begin(); i != m_server->m_peers.end(); ++i) if (i->second.lock().get() == this) { m_server->m_peers.erase(i); break; } } void PeerSession::disconnect(int _reason) { clogS(NetNote) << "Disconnecting (reason:" << reasonOf(_reason) << ")"; if (m_socket.is_open()) { if (m_disconnect == chrono::steady_clock::time_point::max()) { RLPStream s; prep(s); s.appendList(2) << DisconnectPacket << _reason; sealAndSend(s); m_disconnect = chrono::steady_clock::now(); } else dropped(); } } void PeerSession::start() { RLPStream s; prep(s); s.appendList(7) << HelloPacket << (uint)c_protocolVersion << (uint)m_server->m_requiredNetworkId << m_server->m_clientVersion << (m_server->m_mode == NodeMode::Full ? 0x07 : m_server->m_mode == NodeMode::PeerServer ? 0x01 : 0) << m_server->m_public.port() << m_server->m_key.pub(); sealAndSend(s); ping(); doRead(); } void PeerSession::doRead() { auto self(shared_from_this()); m_socket.async_read_some(boost::asio::buffer(m_data), [this,self](boost::system::error_code ec, std::size_t length) { if (ec) { cwarn << "Error reading: " << ec.message(); dropped(); } else { try { m_incoming.resize(m_incoming.size() + length); memcpy(m_incoming.data() + m_incoming.size() - length, m_data.data(), length); while (m_incoming.size() > 8) { if (m_incoming[0] != 0x22 || m_incoming[1] != 0x40 || m_incoming[2] != 0x08 || m_incoming[3] != 0x91) { disconnect(BadProtocol); return; clogS(NetWarn) << "Out of alignment. Skipping: " << hex << showbase << (int)m_incoming[0] << dec; memmove(m_incoming.data(), m_incoming.data() + 1, m_incoming.size() - 1); m_incoming.resize(m_incoming.size() - 1); } else { uint32_t len = fromBigEndian(bytesConstRef(m_incoming.data() + 4, 4)); uint32_t tlen = len + 8; if (m_incoming.size() < tlen) break; // enough has come in. // cerr << "Received " << len << ": " << asHex(bytesConstRef(m_incoming.data() + 8, len)) << endl; auto data = bytesConstRef(m_incoming.data(), tlen); if (!checkPacket(data)) { cerr << "Received " << len << ": " << asHex(bytesConstRef(m_incoming.data() + 8, len)) << endl; cwarn << "INVALID MESSAGE RECEIVED"; disconnect(BadProtocol); return; } else { RLP r(data.cropped(8)); if (!interpret(r)) { // error dropped(); return; } } memmove(m_incoming.data(), m_incoming.data() + tlen, m_incoming.size() - tlen); m_incoming.resize(m_incoming.size() - tlen); } } doRead(); } catch (Exception const& _e) { clogS(NetWarn) << "ERROR: " << _e.description(); dropped(); } catch (std::exception const& _e) { clogS(NetWarn) << "ERROR: " << _e.what(); dropped(); } } }); } PeerServer::PeerServer(std::string const& _clientVersion, BlockChain const& _ch, uint _networkId, unsigned short _port, NodeMode _m, string const& _publicAddress, bool _upnp): m_clientVersion(_clientVersion), m_mode(_m), m_listenPort(_port), m_chain(&_ch), m_acceptor(m_ioService, bi::tcp::endpoint(bi::tcp::v4(), _port)), m_socket(m_ioService), m_key(KeyPair::create()), m_requiredNetworkId(_networkId) { populateAddresses(); determinePublic(_publicAddress, _upnp); ensureAccepting(); clog(NetNote) << "Id:" << asHex(m_key.address().ref().cropped(0, 4)) << "Mode: " << (_m == NodeMode::PeerServer ? "PeerServer" : "Full"); } PeerServer::PeerServer(std::string const& _clientVersion, uint _networkId, NodeMode _m): m_clientVersion(_clientVersion), m_mode(_m), m_listenPort(0), m_acceptor(m_ioService, bi::tcp::endpoint(bi::tcp::v4(), 0)), m_socket(m_ioService), m_key(KeyPair::create()), m_requiredNetworkId(_networkId) { // populate addresses. populateAddresses(); clog(NetNote) << "Id:" << asHex(m_key.address().ref().cropped(0, 4)) << "Mode: " << (m_mode == NodeMode::PeerServer ? "PeerServer" : "Full"); } PeerServer::~PeerServer() { for (auto const& i: m_peers) if (auto p = i.second.lock()) p->disconnect(ClientQuit); delete m_upnp; } void PeerServer::determinePublic(string const& _publicAddress, bool _upnp) { if (_upnp) try { m_upnp = new UPnP; } catch (NoUPnPDevice) {} // let m_upnp continue as null - we handle it properly. bi::tcp::resolver r(m_ioService); if (m_upnp && m_upnp->isValid() && m_peerAddresses.size()) { clog(NetNote) << "External addr: " << m_upnp->externalIP(); int p = m_upnp->addRedirect(m_peerAddresses[0].to_string().c_str(), m_listenPort); if (p) clog(NetNote) << "Punched through NAT and mapped local port" << m_listenPort << "onto external port" << p << "."; else { // couldn't map clog(NetWarn) << "Couldn't punch through NAT (or no NAT in place). Assuming " << m_listenPort << " is local & external port."; p = m_listenPort; } auto eip = m_upnp->externalIP(); if (eip == string("0.0.0.0") && _publicAddress.empty()) m_public = bi::tcp::endpoint(bi::address(), (unsigned short)p); else { m_public = bi::tcp::endpoint(bi::address::from_string(_publicAddress.empty() ? eip : _publicAddress), (unsigned short)p); m_addresses.push_back(m_public.address().to_v4()); } } else { // No UPnP - fallback on given public address or, if empty, the assumed peer address. m_public = bi::tcp::endpoint(_publicAddress.size() ? bi::address::from_string(_publicAddress) : m_peerAddresses.size() ? m_peerAddresses[0] : bi::address(), m_listenPort); m_addresses.push_back(m_public.address().to_v4()); } } void PeerServer::populateAddresses() { #ifdef _WIN32 WSAData wsaData; if (WSAStartup(MAKEWORD(1, 1), &wsaData) != 0) throw NoNetworking(); char ac[80]; if (gethostname(ac, sizeof(ac)) == SOCKET_ERROR) { clog(NetWarn) << "Error " << WSAGetLastError() << " when getting local host name."; WSACleanup(); throw NoNetworking(); } struct hostent* phe = gethostbyname(ac); if (phe == 0) { clog(NetWarn) << "Bad host lookup."; WSACleanup(); throw NoNetworking(); } for (int i = 0; phe->h_addr_list[i] != 0; ++i) { struct in_addr addr; memcpy(&addr, phe->h_addr_list[i], sizeof(struct in_addr)); char *addrStr = inet_ntoa(addr); bi::address ad(bi::address::from_string(addrStr)); m_addresses.push_back(ad.to_v4()); bool isLocal = std::find(c_rejectAddresses.begin(), c_rejectAddresses.end(), ad) != c_rejectAddresses.end(); if (!isLocal) m_peerAddresses.push_back(ad.to_v4()); clog(NetNote) << "Address: " << ac << " = " << m_addresses.back() << (isLocal ? " [LOCAL]" : " [PEER]"); } WSACleanup(); #else ifaddrs* ifaddr; if (getifaddrs(&ifaddr) == -1) throw NoNetworking(); bi::tcp::resolver r(m_ioService); for (ifaddrs* ifa = ifaddr; ifa; ifa = ifa->ifa_next) { if (!ifa->ifa_addr) continue; if (ifa->ifa_addr->sa_family == AF_INET) { char host[NI_MAXHOST]; if (getnameinfo(ifa->ifa_addr, sizeof(struct sockaddr_in), host, NI_MAXHOST, NULL, 0, NI_NUMERICHOST)) continue; // TODO: Make exception safe when no internet. auto it = r.resolve({host, "30303"}); bi::tcp::endpoint ep = it->endpoint(); bi::address ad = ep.address(); m_addresses.push_back(ad.to_v4()); bool isLocal = std::find(c_rejectAddresses.begin(), c_rejectAddresses.end(), ad) != c_rejectAddresses.end(); if (!isLocal) m_peerAddresses.push_back(ad.to_v4()); clog(NetNote) << "Address: " << host << " = " << m_addresses.back() << (isLocal ? " [LOCAL]" : " [PEER]"); } } freeifaddrs(ifaddr); #endif } std::map PeerServer::potentialPeers() { std::map ret; if (!m_public.address().is_unspecified()) ret.insert(make_pair(m_key.pub(), m_public)); for (auto i: m_peers) if (auto j = i.second.lock()) { auto ep = j->endpoint(); // Skip peers with a listen port of zero or are on a private network bool peerOnNet = (j->m_listenPort != 0 && !isPrivateAddress(ep.address())); if (peerOnNet && ep.port() && j->m_id) ret.insert(make_pair(i.first, ep)); } return ret; } void PeerServer::ensureAccepting() { if (m_accepting == false) { clog(NetNote) << "Listening on local port " << m_listenPort << " (public: " << m_public << ")"; m_accepting = true; m_acceptor.async_accept(m_socket, [=](boost::system::error_code ec) { if (!ec) try { try { clog(NetNote) << "Accepted connection from " << m_socket.remote_endpoint(); } catch (...){} bi::address remoteAddress = m_socket.remote_endpoint().address(); // Port defaults to 0 - we let the hello tell us which port the peer listens to auto p = std::make_shared(this, std::move(m_socket), m_requiredNetworkId, remoteAddress); p->start(); } catch (std::exception const& _e) { clog(NetWarn) << "ERROR: " << _e.what(); } m_accepting = false; if (ec.value() != 1 && (m_mode == NodeMode::PeerServer || m_peers.size() < m_idealPeerCount * 2)) ensureAccepting(); }); } } void PeerServer::connect(std::string const& _addr, unsigned short _port) noexcept { try { connect(bi::tcp::endpoint(bi::address::from_string(_addr), _port)); } catch (exception const& e) { // Couldn't connect clog(NetNote) << "Bad host " << _addr << " (" << e.what() << ")"; } } void PeerServer::connect(bi::tcp::endpoint const& _ep) { clog(NetNote) << "Attempting connection to " << _ep; bi::tcp::socket* s = new bi::tcp::socket(m_ioService); s->async_connect(_ep, [=](boost::system::error_code const& ec) { if (ec) { clog(NetNote) << "Connection refused to " << _ep << " (" << ec.message() << ")"; for (auto i = m_incomingPeers.begin(); i != m_incomingPeers.end(); ++i) if (i->second.first == _ep && i->second.second < 3) { m_freePeers.push_back(i->first); goto OK; } // for-else clog(NetNote) << "Giving up."; OK:; } else { auto p = make_shared(this, std::move(*s), m_requiredNetworkId, _ep.address(), _ep.port()); clog(NetNote) << "Connected to " << _ep; p->start(); } delete s; }); } bool PeerServer::sync() { bool ret = false; if (isInitialised()) for (auto i = m_peers.begin(); i != m_peers.end();) { auto p = i->second.lock(); if (p && p->m_socket.is_open() && (p->m_disconnect == chrono::steady_clock::time_point::max() || chrono::steady_clock::now() - p->m_disconnect < chrono::seconds(1))) // kill old peers that should be disconnected. ++i; else { i = m_peers.erase(i); ret = true; } } return ret; } bool PeerServer::ensureInitialised(BlockChain& _bc, TransactionQueue& _tq) { if (m_latestBlockSent == h256()) { // First time - just initialise. m_latestBlockSent = _bc.currentHash(); clog(NetNote) << "Initialising: latest=" << m_latestBlockSent; for (auto const& i: _tq.transactions()) m_transactionsSent.insert(i.first); m_lastPeersRequest = chrono::steady_clock::time_point::min(); return true; } return false; } bool PeerServer::sync(BlockChain& _bc, TransactionQueue& _tq, Overlay& _o) { bool ret = ensureInitialised(_bc, _tq); if (sync()) ret = true; if (m_mode == NodeMode::Full) { for (auto it = m_incomingTransactions.begin(); it != m_incomingTransactions.end(); ++it) if (_tq.import(*it)) {}//ret = true; // just putting a transaction in the queue isn't enough to change the state - it might have an invalid nonce... else m_transactionsSent.insert(sha3(*it)); // if we already had the transaction, then don't bother sending it on. m_incomingTransactions.clear(); auto h = _bc.currentHash(); bool resendAll = (h != m_latestBlockSent); // Send any new transactions. for (auto j: m_peers) if (auto p = j.second.lock()) { bytes b; uint n = 0; for (auto const& i: _tq.transactions()) if ((!m_transactionsSent.count(i.first) && !p->m_knownTransactions.count(i.first)) || p->m_requireTransactions || resendAll) { b += i.second; ++n; m_transactionsSent.insert(i.first); } if (n) { RLPStream ts; PeerSession::prep(ts); ts.appendList(n + 1) << TransactionsPacket; ts.appendRaw(b, n).swapOut(b); seal(b); p->send(&b); } p->m_knownTransactions.clear(); p->m_requireTransactions = false; } // Send any new blocks. if (h != m_latestBlockSent) { // TODO: find where they diverge and send complete new branch. RLPStream ts; PeerSession::prep(ts); ts.appendList(2) << BlocksPacket; bytes b; ts.appendRaw(_bc.block(_bc.currentHash())).swapOut(b); seal(b); for (auto j: m_peers) if (auto p = j.second.lock()) { if (!p->m_knownBlocks.count(_bc.currentHash())) p->send(&b); p->m_knownBlocks.clear(); } } m_latestBlockSent = h; for (int accepted = 1, n = 0; accepted; ++n) { accepted = 0; if (m_incomingBlocks.size()) for (auto it = prev(m_incomingBlocks.end());; --it) { try { _bc.import(*it, _o); it = m_incomingBlocks.erase(it); ++accepted; ret = true; } catch (UnknownParent) { // Don't (yet) know its parent. Leave it for later. m_unknownParentBlocks.push_back(*it); it = m_incomingBlocks.erase(it); } catch (...) { // Some other error - erase it. it = m_incomingBlocks.erase(it); } if (it == m_incomingBlocks.begin()) break; } if (!n && accepted) { for (auto i: m_unknownParentBlocks) m_incomingBlocks.push_back(i); m_unknownParentBlocks.clear(); } } // Connect to additional peers while (m_peers.size() < m_idealPeerCount) { if (m_freePeers.empty()) { if (chrono::steady_clock::now() > m_lastPeersRequest + chrono::seconds(10)) { RLPStream s; bytes b; (PeerSession::prep(s).appendList(1) << GetPeersPacket).swapOut(b); seal(b); for (auto const& i: m_peers) if (auto p = i.second.lock()) if (p->isOpen()) p->send(&b); m_lastPeersRequest = chrono::steady_clock::now(); } if (!m_accepting) ensureAccepting(); break; } auto x = time(0) % m_freePeers.size(); m_incomingPeers[m_freePeers[x]].second++; connect(m_incomingPeers[m_freePeers[x]].first); m_freePeers.erase(m_freePeers.begin() + x); } } // platform for consensus of social contract. // restricts your freedom but does so fairly. and that's the value proposition. // guarantees that everyone else respect the rules of the system. (i.e. obeys laws). // We'll keep at most twice as many as is ideal, halfing what counts as "too young to kill" until we get there. for (uint old = 15000; m_peers.size() > m_idealPeerCount * 2 && old > 100; old /= 2) while (m_peers.size() > m_idealPeerCount) { // look for worst peer to kick off // first work out how many are old enough to kick off. shared_ptr worst; unsigned agedPeers = 0; for (auto i: m_peers) if (auto p = i.second.lock()) if ((m_mode != NodeMode::PeerServer || p->m_caps != 0x01) && chrono::steady_clock::now() > p->m_connect + chrono::milliseconds(old)) // don't throw off new peers; peer-servers should never kick off other peer-servers. { ++agedPeers; if ((!worst || p->m_rating < worst->m_rating || (p->m_rating == worst->m_rating && p->m_connect > worst->m_connect))) // kill older ones worst = p; } if (!worst || agedPeers <= m_idealPeerCount) break; worst->disconnect(TooManyPeers); } return ret; } std::vector PeerServer::peers() const { const_cast(this)->pingAll(); this_thread::sleep_for(chrono::milliseconds(200)); std::vector ret; for (auto& i: m_peers) if (auto j = i.second.lock()) if (j->m_socket.is_open()) ret.push_back(j->m_info); return ret; } void PeerServer::pingAll() { for (auto& i: m_peers) if (auto j = i.second.lock()) j->ping(); } bytes PeerServer::savePeers() const { RLPStream ret; int n = 0; for (auto& i: m_peers) if (auto p = i.second.lock()) if (p->m_socket.is_open() && p->endpoint().port()) { ret.appendList(3) << p->endpoint().address().to_v4().to_bytes() << p->endpoint().port() << p->m_id; n++; } return RLPStream(n).appendRaw(ret.out(), n).out(); } void PeerServer::restorePeers(bytesConstRef _b) { for (auto i: RLP(_b)) { auto k = (Public)i[2]; if (!m_incomingPeers.count(k)) { m_incomingPeers.insert(make_pair(k, make_pair(bi::tcp::endpoint(bi::address_v4(i[0].toArray()), i[1].toInt()), 0))); m_freePeers.push_back(k); } } }