/*
This file is part of cpp-ethereum.
cpp-ethereum is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
cpp-ethereum is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with cpp-ethereum. If not, see .
*/
/** @file Host.cpp
* @author Alex Leverington
* @author Gav Wood
* @date 2014
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "Session.h"
#include "Common.h"
#include "Capability.h"
#include "UPnP.h"
#include "Host.h"
using namespace std;
using namespace dev;
using namespace dev::p2p;
HostNodeTableHandler::HostNodeTableHandler(Host& _host): m_host(_host) {}
void HostNodeTableHandler::processEvent(NodeId _n, NodeTableEventType _e)
{
m_host.onNodeTableEvent(_n, _e);
}
Host::Host(std::string const& _clientVersion, NetworkPreferences const& _n, bool _start):
Worker("p2p", 0),
m_clientVersion(_clientVersion),
m_netPrefs(_n),
m_ifAddresses(Network::getInterfaceAddresses()),
m_ioService(2),
m_tcp4Acceptor(m_ioService),
m_key(move(getHostIdentifier())),
m_nodeTable(new NodeTable(m_ioService, m_key))
{
for (auto address: m_ifAddresses)
if (address.is_v4())
clog(NetNote) << "IP Address: " << address << " = " << (isPrivateAddress(address) ? "[LOCAL]" : "[PEER]");
clog(NetNote) << "Id:" << id();
if (_start)
start();
}
Host::~Host()
{
stop();
}
void Host::start()
{
startWorking();
}
void Host::stop()
{
// called to force io_service to kill any remaining tasks it might have -
// such tasks may involve socket reads from Capabilities that maintain references
// to resources we're about to free.
{
// Although m_run is set by stop() or start(), it effects m_runTimer so x_runTimer is used instead of a mutex for m_run.
// when m_run == false, run() will cause this::run() to stop() ioservice
Guard l(x_runTimer);
// ignore if already stopped/stopping
if (!m_run)
return;
m_run = false;
}
// wait for m_timer to reset (indicating network scheduler has stopped)
while (!!m_timer)
this_thread::sleep_for(chrono::milliseconds(50));
// stop worker thread
stopWorking();
}
void Host::doneWorking()
{
// reset ioservice (allows manually polling network, below)
m_ioService.reset();
// shutdown acceptor
m_tcp4Acceptor.cancel();
if (m_tcp4Acceptor.is_open())
m_tcp4Acceptor.close();
// There maybe an incoming connection which started but hasn't finished.
// Wait for acceptor to end itself instead of assuming it's complete.
// This helps ensure a peer isn't stopped at the same time it's starting
// and that socket for pending connection is closed.
while (m_accepting)
m_ioService.poll();
// stop capabilities (eth: stops syncing or block/tx broadcast)
for (auto const& h: m_capabilities)
h.second->onStopping();
// disconnect peers
for (unsigned n = 0;; n = 0)
{
{
RecursiveGuard l(x_sessions);
for (auto i: m_sessions)
if (auto p = i.second.lock())
if (p->isOpen())
{
p->disconnect(ClientQuit);
n++;
}
}
if (!n)
break;
// poll so that peers send out disconnect packets
m_ioService.poll();
}
// stop network (again; helpful to call before subsequent reset())
m_ioService.stop();
// reset network (allows reusing ioservice in future)
m_ioService.reset();
// finally, clear out peers (in case they're lingering)
RecursiveGuard l(x_sessions);
m_sessions.clear();
}
unsigned Host::protocolVersion() const
{
return 3;
}
void Host::registerPeer(std::shared_ptr _s, CapDescs const& _caps)
{
assert(!!_s->m_peer);
assert(!!_s->m_peer->id);
{
RecursiveGuard l(x_sessions);
m_sessions[_s->m_peer->id] = _s;
}
unsigned o = (unsigned)UserPacket;
for (auto const& i: _caps)
if (haveCapability(i))
{
_s->m_capabilities[i] = shared_ptr(m_capabilities[i]->newPeerCapability(_s.get(), o));
o += m_capabilities[i]->messageCount();
}
}
void Host::onNodeTableEvent(NodeId _n, NodeTableEventType _e)
{
if (_e == NodeEntryAdded)
{
auto n = (*m_nodeTable)[_n];
if (n)
{
RecursiveGuard l(x_sessions);
auto p = m_peers[_n];
if (!p)
{
m_peers[_n] = make_shared();
p = m_peers[_n];
p->id = _n;
}
p->address = n.endpoint.tcp;
if (peerCount() < m_idealPeerCount)
connect(p);
}
}
else if (_e == NodeEntryRemoved)
{
RecursiveGuard l(x_sessions);
m_peers.erase(_n);
}
}
void Host::seal(bytes& _b)
{
_b[0] = 0x22;
_b[1] = 0x40;
_b[2] = 0x08;
_b[3] = 0x91;
uint32_t len = (uint32_t)_b.size() - 8;
_b[4] = (len >> 24) & 0xff;
_b[5] = (len >> 16) & 0xff;
_b[6] = (len >> 8) & 0xff;
_b[7] = len & 0xff;
}
void Host::determinePublic(string const& _publicAddress, bool _upnp)
{
m_peerAddresses.clear();
// no point continuing if there are no interface addresses or valid listen port
if (!m_ifAddresses.size() || m_listenPort < 1)
return;
// populate interfaces we'll listen on (eth listens on all interfaces); ignores local
for (auto addr: m_ifAddresses)
if ((m_netPrefs.localNetworking || !isPrivateAddress(addr)) && !isLocalHostAddress(addr))
m_peerAddresses.insert(addr);
// if user supplied address is a public address then we use it
// if user supplied address is private, and localnetworking is enabled, we use it
bi::address reqPublicAddr(bi::address(_publicAddress.empty() ? bi::address() : bi::address::from_string(_publicAddress)));
bi::tcp::endpoint reqPublic(reqPublicAddr, m_listenPort);
bool isprivate = isPrivateAddress(reqPublicAddr);
bool ispublic = !isprivate && !isLocalHostAddress(reqPublicAddr);
if (!reqPublicAddr.is_unspecified() && (ispublic || (isprivate && m_netPrefs.localNetworking)))
{
if (!m_peerAddresses.count(reqPublicAddr))
m_peerAddresses.insert(reqPublicAddr);
m_tcpPublic = reqPublic;
return;
}
// if address wasn't provided, then use first public ipv4 address found
for (auto addr: m_peerAddresses)
if (addr.is_v4() && !isPrivateAddress(addr))
{
m_tcpPublic = bi::tcp::endpoint(*m_peerAddresses.begin(), m_listenPort);
return;
}
// or find address via upnp
if (_upnp)
{
bi::address upnpifaddr;
bi::tcp::endpoint upnpep = Network::traverseNAT(m_ifAddresses, m_listenPort, upnpifaddr);
if (!upnpep.address().is_unspecified() && !upnpifaddr.is_unspecified())
{
if (!m_peerAddresses.count(upnpep.address()))
m_peerAddresses.insert(upnpep.address());
m_tcpPublic = upnpep;
return;
}
}
// or if no address provided, use private ipv4 address if local networking is enabled
if (reqPublicAddr.is_unspecified())
if (m_netPrefs.localNetworking)
for (auto addr: m_peerAddresses)
if (addr.is_v4() && isPrivateAddress(addr))
{
m_tcpPublic = bi::tcp::endpoint(addr, m_listenPort);
return;
}
// otherwise address is unspecified
m_tcpPublic = bi::tcp::endpoint(bi::address(), m_listenPort);
}
void Host::runAcceptor()
{
assert(m_listenPort > 0);
if (m_run && !m_accepting)
{
clog(NetConnect) << "Listening on local port " << m_listenPort << " (public: " << m_tcpPublic << ")";
m_accepting = true;
bi::tcp::socket* s = new bi::tcp::socket(m_ioService);
m_tcp4Acceptor.async_accept(*s, [=](boost::system::error_code ec)
{
bool success = false;
if (!ec)
{
try
{
doHandshake(s);
success = true;
}
catch (Exception const& _e)
{
clog(NetWarn) << "ERROR: " << diagnostic_information(_e);
}
catch (std::exception const& _e)
{
clog(NetWarn) << "ERROR: " << _e.what();
}
}
if (!success && s->is_open())
{
boost::system::error_code ec;
s->shutdown(boost::asio::ip::tcp::socket::shutdown_both, ec);
s->close();
}
m_accepting = false;
delete s;
if (ec.value() < 1)
runAcceptor();
});
}
}
void Host::doHandshake(bi::tcp::socket* _socket, NodeId _nodeId)
{
try {
clog(NetConnect) << "Accepting connection for " << _socket->remote_endpoint();
} catch (...){}
auto p = std::make_shared(this, std::move(*_socket), m_peers[_nodeId]);
p->start();
}
string Host::pocHost()
{
vector strs;
boost::split(strs, dev::Version, boost::is_any_of("."));
return "poc-" + strs[1] + ".ethdev.com";
}
void Host::addNode(NodeId const& _node, std::string const& _addr, unsigned short _tcpPeerPort, unsigned short _udpNodePort)
{
if (_tcpPeerPort < 30300 || _tcpPeerPort > 30305)
cwarn << "Weird port being recorded: " << _tcpPeerPort;
if (_tcpPeerPort >= /*49152*/32768)
{
cwarn << "Private port being recorded - setting to 0";
_tcpPeerPort = 0;
}
boost::system::error_code ec;
bi::address addr = bi::address::from_string(_addr, ec);
if (ec)
{
bi::tcp::resolver r(m_ioService);
r.async_resolve({_addr, toString(_tcpPeerPort)}, [=](boost::system::error_code const& _ec, bi::tcp::resolver::iterator _epIt) {
if (_ec)
return;
bi::tcp::endpoint tcp = *_epIt;
addNode(Node(_node, NodeIPEndpoint(bi::udp::endpoint(tcp.address(), _udpNodePort), tcp)));
});
}
else
addNode(Node(_node, NodeIPEndpoint(bi::udp::endpoint(addr, _udpNodePort), bi::tcp::endpoint(addr, _tcpPeerPort))));
}
void Host::connect(std::shared_ptr const& _n)
{
if (!m_run)
return;
if (havePeerSession(_n->id))
{
clog(NetWarn) << "Aborted connect. Node already connected.";
return;
}
if (!m_nodeTable->haveNode(_n->id))
{
clog(NetWarn) << "Aborted connect. Node not in node table.";
return;
}
// prevent concurrently connecting to a node
PeerInfo *nptr = _n.get();
{
Guard l(x_pendingNodeConns);
if (m_pendingNodeConns.count(nptr))
return;
m_pendingNodeConns.insert(nptr);
}
clog(NetConnect) << "Attempting connection to node" << _n->id.abridged() << "@" << _n->address << "from" << id().abridged();
_n->lastAttempted = std::chrono::system_clock::now();
_n->failedAttempts++;
bi::tcp::socket* s = new bi::tcp::socket(m_ioService);
s->async_connect(_n->address, [=](boost::system::error_code const& ec)
{
if (ec)
{
clog(NetConnect) << "Connection refused to node" << _n->id.abridged() << "@" << _n->address << "(" << ec.message() << ")";
_n->lastDisconnect = TCPError;
_n->lastAttempted = std::chrono::system_clock::now();
}
else
{
clog(NetConnect) << "Connected to" << _n->id.abridged() << "@" << _n->address;
_n->lastConnected = std::chrono::system_clock::now();
auto p = make_shared(this, std::move(*s), _n);
p->start();
}
delete s;
Guard l(x_pendingNodeConns);
m_pendingNodeConns.erase(nptr);
});
}
unsigned PeerInfo::fallbackSeconds() const
{
switch (lastDisconnect)
{
case BadProtocol:
return 30 * (failedAttempts + 1);
case UselessPeer:
case TooManyPeers:
case ClientQuit:
return 15 * (failedAttempts + 1);
case NoDisconnect:
return 0;
default:
if (failedAttempts < 5)
return failedAttempts * 5;
else if (failedAttempts < 15)
return 25 + (failedAttempts - 5) * 10;
else
return 25 + 100 + (failedAttempts - 15) * 20;
}
}
// TODO: P2P rebuild noetable when localNetworking is enabled/disabled
// TODO: P2P migrate grow/prunePeers into 'maintainPeers' & evaluate reputation instead of availability. schedule via deadline timer.
//void Host::growPeers()
//{
// RecursiveGuard l(x_sessions);
// int morePeers = (int)m_idealPeerCount - m_sessions.size();
// if (morePeers > 0)
// {
// auto toTry = m_ready;
// if (!m_netPrefs.localNetworking)
// toTry -= m_private;
// set ns;
// for (auto i: toTry)
// if (m_nodes[m_nodesList[i]]->shouldReconnect())
// ns.insert(*m_nodes[m_nodesList[i]]);
//
// if (ns.size())
// for (PeerInfo const& i: ns)
// {
// connect(m_nodes[i.id]);
// if (!--morePeers)
// return;
// }
// else
// for (auto const& i: m_sessions)
// if (auto p = i.second.lock())
// p->ensureNodesRequested();
// }
//}
//
//void Host::prunePeers()
//{
// RecursiveGuard l(x_sessions);
// // We'll keep at most twice as many as is ideal, halfing what counts as "too young to kill" until we get there.
// set dc;
// for (unsigned old = 15000; m_sessions.size() - dc.size() > m_idealPeerCount * 2 && old > 100; old /= 2)
// if (m_sessions.size() - dc.size() > m_idealPeerCount)
// {
// // look for worst peer to kick off
// // first work out how many are old enough to kick off.
// shared_ptr worst;
// unsigned agedPeers = 0;
// for (auto i: m_sessions)
// if (!dc.count(i.first))
// if (auto p = i.second.lock())
// if (/*(m_mode != NodeMode::Host || p->m_caps != 0x01) &&*/ chrono::steady_clock::now() > p->m_connect + chrono::milliseconds(old)) // don't throw off new peers; peer-servers should never kick off other peer-servers.
// {
// ++agedPeers;
// if ((!worst || p->rating() < worst->rating() || (p->rating() == worst->rating() && p->m_connect > worst->m_connect))) // kill older ones
// worst = p;
// }
// if (!worst || agedPeers <= m_idealPeerCount)
// break;
// dc.insert(worst->id());
// worst->disconnect(TooManyPeers);
// }
//
// // Remove dead peers from list.
// for (auto i = m_sessions.begin(); i != m_sessions.end();)
// if (i->second.lock().get())
// ++i;
// else
// i = m_sessions.erase(i);
//}
PeerSessionInfos Host::peers() const
{
if (!m_run)
return PeerSessionInfos();
std::vector ret;
RecursiveGuard l(x_sessions);
for (auto& i: m_sessions)
if (auto j = i.second.lock())
if (j->m_socket.is_open())
ret.push_back(j->m_info);
return ret;
}
void Host::run(boost::system::error_code const&)
{
if (!m_run)
{
// reset NodeTable
m_nodeTable.reset();
// stopping io service allows running manual network operations for shutdown
// and also stops blocking worker thread, allowing worker thread to exit
m_ioService.stop();
// resetting timer signals network that nothing else can be scheduled to run
m_timer.reset();
return;
}
for (auto p: m_sessions)
if (auto pp = p.second.lock())
pp->serviceNodesRequest();
if (chrono::steady_clock::now() - m_lastPing >= chrono::seconds(30)) // ping every 30s.
keepAlivePeers();
auto runcb = [this](boost::system::error_code const& error) -> void { run(error); };
m_timer->expires_from_now(boost::posix_time::milliseconds(c_timerInterval));
m_timer->async_wait(runcb);
}
void Host::startedWorking()
{
asserts(!m_timer);
{
// prevent m_run from being set to true at same time as set to false by stop()
// don't release mutex until m_timer is set so in case stop() is called at same
// time, stop will wait on m_timer and graceful network shutdown.
Guard l(x_runTimer);
// create deadline timer
m_timer.reset(new boost::asio::deadline_timer(m_ioService));
m_run = true;
}
// try to open acceptor (todo: ipv6)
m_listenPort = Network::tcp4Listen(m_tcp4Acceptor, m_netPrefs.listenPort);
// start capability threads
for (auto const& h: m_capabilities)
h.second->onStarting();
// determine public IP, but only if we're able to listen for connections
// todo: GUI when listen is unavailable in UI
if (m_listenPort)
{
determinePublic(m_netPrefs.publicIP, m_netPrefs.upnp);
if (m_listenPort > 0)
runAcceptor();
if (!m_tcpPublic.address().is_unspecified())
// TODO: add m_tcpPublic endpoint; sort out endpoint stuff for nodetable
m_nodeTable.reset(new NodeTable(m_ioService, m_key, m_listenPort));
else
m_nodeTable.reset(new NodeTable(m_ioService, m_key, m_listenPort > 0 ? m_listenPort : 30303));
}
clog(NetNote) << "p2p.started id:" << id().abridged();
run(boost::system::error_code());
}
void Host::doWork()
{
if (m_run)
m_ioService.run();
}
void Host::keepAlivePeers()
{
RecursiveGuard l(x_sessions);
for (auto p: m_sessions)
if (auto pp = p.second.lock())
{
if (chrono::steady_clock::now() - pp->m_lastReceived >= chrono::seconds(60))
pp->disconnect(PingTimeout);
else
pp->ping();
}
m_lastPing = chrono::steady_clock::now();
}
bytes Host::saveNodes() const
{
RLPStream nodes;
int count = 0;
{
RecursiveGuard l(x_sessions);
for (auto const& i: m_peers)
{
PeerInfo const& n = *(i.second);
// TODO: PoC-7: Figure out why it ever shares these ports.//n.address.port() >= 30300 && n.address.port() <= 30305 &&
if (!n.dead && chrono::system_clock::now() - n.lastConnected < chrono::seconds(3600 * 48) && n.address.port() > 0 && n.address.port() < /*49152*/32768 && n.id != id() && !isPrivateAddress(n.address.address()))
{
nodes.appendList(10);
if (n.address.address().is_v4())
nodes << n.address.address().to_v4().to_bytes();
else
nodes << n.address.address().to_v6().to_bytes();
nodes << n.address.port() << n.id /* << (int)n.idOrigin */ << 0
<< chrono::duration_cast(n.lastConnected.time_since_epoch()).count()
<< chrono::duration_cast(n.lastAttempted.time_since_epoch()).count()
<< n.failedAttempts << (unsigned)n.lastDisconnect << n.score << n.rating;
count++;
}
}
}
RLPStream ret(3);
ret << 0 << m_key.secret();
ret.appendList(count).appendRaw(nodes.out(), count);
return ret.out();
}
void Host::restoreNodes(bytesConstRef _b)
{
RecursiveGuard l(x_sessions);
RLP r(_b);
if (r.itemCount() > 0 && r[0].isInt())
switch (r[0].toInt())
{
case 0:
{
m_key = KeyPair(r[1].toHash());
// noteNode(id(), m_tcpPublic);
for (auto i: r[2])
{
bi::tcp::endpoint ep;
if (i[0].itemCount() == 4)
ep = bi::tcp::endpoint(bi::address_v4(i[0].toArray()), i[1].toInt());
else
ep = bi::tcp::endpoint(bi::address_v6(i[0].toArray()), i[1].toInt());
auto id = (NodeId)i[2];
if (!m_peers.count(id))
{
//// auto o = (Origin)i[3].toInt();
// auto n = noteNode(id, ep);
// n->lastConnected = chrono::system_clock::time_point(chrono::seconds(i[4].toInt()));
// n->lastAttempted = chrono::system_clock::time_point(chrono::seconds(i[5].toInt()));
// n->failedAttempts = i[6].toInt();
// n->lastDisconnect = (DisconnectReason)i[7].toInt();
// n->score = (int)i[8].toInt();
// n->rating = (int)i[9].toInt();
}
}
}
default:;
}
else
for (auto i: r)
{
auto id = (NodeId)i[2];
if (!m_peers.count(id))
{
bi::tcp::endpoint ep;
if (i[0].itemCount() == 4)
ep = bi::tcp::endpoint(bi::address_v4(i[0].toArray()), i[1].toInt());
else
ep = bi::tcp::endpoint(bi::address_v6(i[0].toArray()), i[1].toInt());
// auto n = noteNode(id, ep);
}
}
}
KeyPair Host::getHostIdentifier()
{
static string s_file(getDataDir() + "/host");
static mutex s_x;
lock_guard l(s_x);
h256 secret;
bytes b = contents(s_file);
if (b.size() == 32)
memcpy(secret.data(), b.data(), 32);
else
{
// todo: replace w/user entropy; abstract to devcrypto
std::mt19937_64 s_eng(time(0) + chrono::high_resolution_clock::now().time_since_epoch().count());
std::uniform_int_distribution d(0, 255);
for (unsigned i = 0; i < 32; ++i)
secret[i] = (byte)d(s_eng);
}
if (!secret)
BOOST_THROW_EXCEPTION(crypto::InvalidState());
return move(KeyPair(move(secret)));
}