/********************************************************************** * Copyright (c) 2013, 2014 Pieter Wuille * * Distributed under the MIT software license, see the accompanying * * file COPYING or http://www.opensource.org/licenses/mit-license.php.* **********************************************************************/ #ifndef _SECP256K1_ECMULT_IMPL_H_ #define _SECP256K1_ECMULT_IMPL_H_ #include "group.h" #include "scalar.h" #include "ecmult.h" /* optimal for 128-bit and 256-bit exponents. */ #define WINDOW_A 5 /** larger numbers may result in slightly better performance, at the cost of exponentially larger precomputed tables. */ #ifdef USE_ENDOMORPHISM /** Two tables for window size 15: 1.375 MiB. */ #define WINDOW_G 15 #else /** One table for window size 16: 1.375 MiB. */ #define WINDOW_G 16 #endif /** Fill a table 'pre' with precomputed odd multiples of a. W determines the size of the table. * pre will contains the values [1*a,3*a,5*a,...,(2^(w-1)-1)*a], so it needs place for * 2^(w-2) entries. * * There are two versions of this function: * - secp256k1_ecmult_precomp_wnaf_gej, which operates on group elements in jacobian notation, * fast to precompute, but slower to use in later additions. * - secp256k1_ecmult_precomp_wnaf_ge, which operates on group elements in affine notations, * (much) slower to precompute, but a bit faster to use in later additions. * To compute a*P + b*G, we use the jacobian version for P, and the affine version for G, as * G is constant, so it only needs to be done once in advance. */ static void secp256k1_ecmult_table_precomp_gej_var(secp256k1_gej_t *pre, const secp256k1_gej_t *a, int w) { secp256k1_gej_t d; int i; pre[0] = *a; secp256k1_gej_double_var(&d, &pre[0]); for (i = 1; i < (1 << (w-2)); i++) { secp256k1_gej_add_var(&pre[i], &d, &pre[i-1]); } } static void secp256k1_ecmult_table_precomp_ge_storage_var(secp256k1_ge_storage_t *pre, const secp256k1_gej_t *a, int w) { secp256k1_gej_t d; int i; const int table_size = 1 << (w-2); secp256k1_gej_t *prej = (secp256k1_gej_t *)checked_malloc(sizeof(secp256k1_gej_t) * table_size); secp256k1_ge_t *prea = (secp256k1_ge_t *)checked_malloc(sizeof(secp256k1_ge_t) * table_size); prej[0] = *a; secp256k1_gej_double_var(&d, a); for (i = 1; i < table_size; i++) { secp256k1_gej_add_var(&prej[i], &d, &prej[i-1]); } secp256k1_ge_set_all_gej_var(table_size, prea, prej); for (i = 0; i < table_size; i++) { secp256k1_ge_to_storage(&pre[i], &prea[i]); } free(prej); free(prea); } /** The number of entries a table with precomputed multiples needs to have. */ #define ECMULT_TABLE_SIZE(w) (1 << ((w)-2)) /** The following two macro retrieves a particular odd multiple from a table * of precomputed multiples. */ #define ECMULT_TABLE_GET_GEJ(r,pre,n,w) do { \ VERIFY_CHECK(((n) & 1) == 1); \ VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \ VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1)); \ if ((n) > 0) { \ *(r) = (pre)[((n)-1)/2]; \ } else { \ secp256k1_gej_neg((r), &(pre)[(-(n)-1)/2]); \ } \ } while(0) #define ECMULT_TABLE_GET_GE_STORAGE(r,pre,n,w) do { \ VERIFY_CHECK(((n) & 1) == 1); \ VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \ VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1)); \ if ((n) > 0) { \ secp256k1_ge_from_storage((r), &(pre)[((n)-1)/2]); \ } else { \ secp256k1_ge_from_storage((r), &(pre)[(-(n)-1)/2]); \ secp256k1_ge_neg((r), (r)); \ } \ } while(0) static void secp256k1_ecmult_context_init(secp256k1_ecmult_context_t *ctx) { ctx->pre_g = NULL; #ifdef USE_ENDOMORPHISM ctx->pre_g_128 = NULL; #endif } static void secp256k1_ecmult_context_build(secp256k1_ecmult_context_t *ctx) { secp256k1_gej_t gj; if (ctx->pre_g != NULL) { return; } /* get the generator */ secp256k1_gej_set_ge(&gj, &secp256k1_ge_const_g); ctx->pre_g = (secp256k1_ge_storage_t (*)[])checked_malloc(sizeof((*ctx->pre_g)[0]) * ECMULT_TABLE_SIZE(WINDOW_G)); /* precompute the tables with odd multiples */ secp256k1_ecmult_table_precomp_ge_storage_var(*ctx->pre_g, &gj, WINDOW_G); #ifdef USE_ENDOMORPHISM { secp256k1_gej_t g_128j; int i; ctx->pre_g_128 = (secp256k1_ge_storage_t (*)[])checked_malloc(sizeof((*ctx->pre_g_128)[0]) * ECMULT_TABLE_SIZE(WINDOW_G)); /* calculate 2^128*generator */ g_128j = gj; for (i = 0; i < 128; i++) { secp256k1_gej_double_var(&g_128j, &g_128j); } secp256k1_ecmult_table_precomp_ge_storage_var(*ctx->pre_g_128, &g_128j, WINDOW_G); } #endif } static void secp256k1_ecmult_context_clone(secp256k1_ecmult_context_t *dst, const secp256k1_ecmult_context_t *src) { if (src->pre_g == NULL) { dst->pre_g = NULL; } else { size_t size = sizeof((*dst->pre_g)[0]) * ECMULT_TABLE_SIZE(WINDOW_G); dst->pre_g = (secp256k1_ge_storage_t (*)[])checked_malloc(size); memcpy(dst->pre_g, src->pre_g, size); } #ifdef USE_ENDOMORPHISM if (src->pre_g_128 == NULL) { dst->pre_g_128 = NULL; } else { size_t size = sizeof((*dst->pre_g_128)[0]) * ECMULT_TABLE_SIZE(WINDOW_G); dst->pre_g_128 = (secp256k1_ge_storage_t (*)[])checked_malloc(size); memcpy(dst->pre_g_128, src->pre_g_128, size); } #endif } static int secp256k1_ecmult_context_is_built(const secp256k1_ecmult_context_t *ctx) { return ctx->pre_g != NULL; } static void secp256k1_ecmult_context_clear(secp256k1_ecmult_context_t *ctx) { free(ctx->pre_g); #ifdef USE_ENDOMORPHISM free(ctx->pre_g_128); #endif secp256k1_ecmult_context_init(ctx); } /** Convert a number to WNAF notation. The number becomes represented by sum(2^i * wnaf[i], i=0..bits), * with the following guarantees: * - each wnaf[i] is either 0, or an odd integer between -(1<<(w-1) - 1) and (1<<(w-1) - 1) * - two non-zero entries in wnaf are separated by at least w-1 zeroes. * - the number of set values in wnaf is returned. This number is at most 256, and at most one more * - than the number of bits in the (absolute value) of the input. */ static int secp256k1_ecmult_wnaf(int *wnaf, const secp256k1_scalar_t *a, int w) { secp256k1_scalar_t s = *a; int set_bits = 0; int bit = 0; int sign = 1; if (secp256k1_scalar_get_bits(&s, 255, 1)) { secp256k1_scalar_negate(&s, &s); sign = -1; } while (bit < 256) { int now; int word; if (secp256k1_scalar_get_bits(&s, bit, 1) == 0) { bit++; continue; } while (set_bits < bit) { wnaf[set_bits++] = 0; } now = w; if (bit + now > 256) { now = 256 - bit; } word = secp256k1_scalar_get_bits_var(&s, bit, now); if (word & (1 << (w-1))) { secp256k1_scalar_add_bit(&s, bit + w); wnaf[set_bits++] = sign * (word - (1 << w)); } else { wnaf[set_bits++] = sign * word; } bit += now; } return set_bits; } static void secp256k1_ecmult(const secp256k1_ecmult_context_t *ctx, secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_scalar_t *na, const secp256k1_scalar_t *ng) { secp256k1_gej_t tmpj; secp256k1_gej_t pre_a[ECMULT_TABLE_SIZE(WINDOW_A)]; secp256k1_ge_t tmpa; #ifdef USE_ENDOMORPHISM secp256k1_gej_t pre_a_lam[ECMULT_TABLE_SIZE(WINDOW_A)]; secp256k1_scalar_t na_1, na_lam; /* Splitted G factors. */ secp256k1_scalar_t ng_1, ng_128; int wnaf_na_1[130]; int wnaf_na_lam[130]; int bits_na_1; int bits_na_lam; int wnaf_ng_1[129]; int bits_ng_1; int wnaf_ng_128[129]; int bits_ng_128; #else int wnaf_na[256]; int bits_na; int wnaf_ng[257]; int bits_ng; #endif int i; int bits; #ifdef USE_ENDOMORPHISM /* split na into na_1 and na_lam (where na = na_1 + na_lam*lambda, and na_1 and na_lam are ~128 bit) */ secp256k1_scalar_split_lambda_var(&na_1, &na_lam, na); /* build wnaf representation for na_1 and na_lam. */ bits_na_1 = secp256k1_ecmult_wnaf(wnaf_na_1, &na_1, WINDOW_A); bits_na_lam = secp256k1_ecmult_wnaf(wnaf_na_lam, &na_lam, WINDOW_A); VERIFY_CHECK(bits_na_1 <= 130); VERIFY_CHECK(bits_na_lam <= 130); bits = bits_na_1; if (bits_na_lam > bits) { bits = bits_na_lam; } #else /* build wnaf representation for na. */ bits_na = secp256k1_ecmult_wnaf(wnaf_na, na, WINDOW_A); bits = bits_na; #endif /* calculate odd multiples of a */ secp256k1_ecmult_table_precomp_gej_var(pre_a, a, WINDOW_A); #ifdef USE_ENDOMORPHISM for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) { secp256k1_gej_mul_lambda(&pre_a_lam[i], &pre_a[i]); } /* split ng into ng_1 and ng_128 (where gn = gn_1 + gn_128*2^128, and gn_1 and gn_128 are ~128 bit) */ secp256k1_scalar_split_128(&ng_1, &ng_128, ng); /* Build wnaf representation for ng_1 and ng_128 */ bits_ng_1 = secp256k1_ecmult_wnaf(wnaf_ng_1, &ng_1, WINDOW_G); bits_ng_128 = secp256k1_ecmult_wnaf(wnaf_ng_128, &ng_128, WINDOW_G); if (bits_ng_1 > bits) { bits = bits_ng_1; } if (bits_ng_128 > bits) { bits = bits_ng_128; } #else bits_ng = secp256k1_ecmult_wnaf(wnaf_ng, ng, WINDOW_G); if (bits_ng > bits) { bits = bits_ng; } #endif secp256k1_gej_set_infinity(r); for (i = bits-1; i >= 0; i--) { int n; secp256k1_gej_double_var(r, r); #ifdef USE_ENDOMORPHISM if (i < bits_na_1 && (n = wnaf_na_1[i])) { ECMULT_TABLE_GET_GEJ(&tmpj, pre_a, n, WINDOW_A); secp256k1_gej_add_var(r, r, &tmpj); } if (i < bits_na_lam && (n = wnaf_na_lam[i])) { ECMULT_TABLE_GET_GEJ(&tmpj, pre_a_lam, n, WINDOW_A); secp256k1_gej_add_var(r, r, &tmpj); } if (i < bits_ng_1 && (n = wnaf_ng_1[i])) { ECMULT_TABLE_GET_GE_STORAGE(&tmpa, *ctx->pre_g, n, WINDOW_G); secp256k1_gej_add_ge_var(r, r, &tmpa); } if (i < bits_ng_128 && (n = wnaf_ng_128[i])) { ECMULT_TABLE_GET_GE_STORAGE(&tmpa, *ctx->pre_g_128, n, WINDOW_G); secp256k1_gej_add_ge_var(r, r, &tmpa); } #else if (i < bits_na && (n = wnaf_na[i])) { ECMULT_TABLE_GET_GEJ(&tmpj, pre_a, n, WINDOW_A); secp256k1_gej_add_var(r, r, &tmpj); } if (i < bits_ng && (n = wnaf_ng[i])) { ECMULT_TABLE_GET_GE_STORAGE(&tmpa, *ctx->pre_g, n, WINDOW_G); secp256k1_gej_add_ge_var(r, r, &tmpa); } #endif } } #endif