/********************************************************************** * Copyright (c) 2013, 2014 Pieter Wuille * * Distributed under the MIT software license, see the accompanying * * file COPYING or http://www.opensource.org/licenses/mit-license.php.* **********************************************************************/ #ifndef _SECP256K1_FIELD_REPR_IMPL_H_ #define _SECP256K1_FIELD_REPR_IMPL_H_ #if defined HAVE_CONFIG_H #include "libsecp256k1-config.h" #endif #include #include "util.h" #include "num.h" #include "field.h" #if defined(USE_ASM_X86_64) #include "field_5x52_asm_impl.h" #else #include "field_5x52_int128_impl.h" #endif /** Implements arithmetic modulo FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFC2F, * represented as 5 uint64_t's in base 2^52. The values are allowed to contain >52 each. In particular, * each FieldElem has a 'magnitude' associated with it. Internally, a magnitude M means each element * is at most M*(2^53-1), except the most significant one, which is limited to M*(2^49-1). All operations * accept any input with magnitude at most M, and have different rules for propagating magnitude to their * output. */ #ifdef VERIFY static void secp256k1_fe_verify(const secp256k1_fe_t *a) { const uint64_t *d = a->n; int m = a->normalized ? 1 : 2 * a->magnitude, r = 1; /* secp256k1 'p' value defined in "Standards for Efficient Cryptography" (SEC2) 2.7.1. */ r &= (d[0] <= 0xFFFFFFFFFFFFFULL * m); r &= (d[1] <= 0xFFFFFFFFFFFFFULL * m); r &= (d[2] <= 0xFFFFFFFFFFFFFULL * m); r &= (d[3] <= 0xFFFFFFFFFFFFFULL * m); r &= (d[4] <= 0x0FFFFFFFFFFFFULL * m); r &= (a->magnitude >= 0); r &= (a->magnitude <= 2048); if (a->normalized) { r &= (a->magnitude <= 1); if (r && (d[4] == 0x0FFFFFFFFFFFFULL) && ((d[3] & d[2] & d[1]) == 0xFFFFFFFFFFFFFULL)) { r &= (d[0] < 0xFFFFEFFFFFC2FULL); } } VERIFY_CHECK(r == 1); } #else static void secp256k1_fe_verify(const secp256k1_fe_t *a) { (void)a; } #endif static void secp256k1_fe_normalize(secp256k1_fe_t *r) { uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4]; /* Reduce t4 at the start so there will be at most a single carry from the first pass */ uint64_t m; uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL; /* The first pass ensures the magnitude is 1, ... */ t0 += x * 0x1000003D1ULL; t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL; t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; m = t1; t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; m &= t2; t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; m &= t3; /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */ VERIFY_CHECK(t4 >> 49 == 0); /* At most a single final reduction is needed; check if the value is >= the field characteristic */ x = (t4 >> 48) | ((t4 == 0x0FFFFFFFFFFFFULL) & (m == 0xFFFFFFFFFFFFFULL) & (t0 >= 0xFFFFEFFFFFC2FULL)); /* Apply the final reduction (for constant-time behaviour, we do it always) */ t0 += x * 0x1000003D1ULL; t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL; t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; /* If t4 didn't carry to bit 48 already, then it should have after any final reduction */ VERIFY_CHECK(t4 >> 48 == x); /* Mask off the possible multiple of 2^256 from the final reduction */ t4 &= 0x0FFFFFFFFFFFFULL; r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4; #ifdef VERIFY r->magnitude = 1; r->normalized = 1; secp256k1_fe_verify(r); #endif } static void secp256k1_fe_normalize_weak(secp256k1_fe_t *r) { uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4]; /* Reduce t4 at the start so there will be at most a single carry from the first pass */ uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL; /* The first pass ensures the magnitude is 1, ... */ t0 += x * 0x1000003D1ULL; t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL; t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */ VERIFY_CHECK(t4 >> 49 == 0); r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4; #ifdef VERIFY r->magnitude = 1; secp256k1_fe_verify(r); #endif } static void secp256k1_fe_normalize_var(secp256k1_fe_t *r) { uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4]; /* Reduce t4 at the start so there will be at most a single carry from the first pass */ uint64_t m; uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL; /* The first pass ensures the magnitude is 1, ... */ t0 += x * 0x1000003D1ULL; t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL; t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; m = t1; t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; m &= t2; t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; m &= t3; /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */ VERIFY_CHECK(t4 >> 49 == 0); /* At most a single final reduction is needed; check if the value is >= the field characteristic */ x = (t4 >> 48) | ((t4 == 0x0FFFFFFFFFFFFULL) & (m == 0xFFFFFFFFFFFFFULL) & (t0 >= 0xFFFFEFFFFFC2FULL)); if (x) { t0 += 0x1000003D1ULL; t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL; t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; /* If t4 didn't carry to bit 48 already, then it should have after any final reduction */ VERIFY_CHECK(t4 >> 48 == x); /* Mask off the possible multiple of 2^256 from the final reduction */ t4 &= 0x0FFFFFFFFFFFFULL; } r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4; #ifdef VERIFY r->magnitude = 1; r->normalized = 1; secp256k1_fe_verify(r); #endif } static int secp256k1_fe_normalizes_to_zero(secp256k1_fe_t *r) { uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4]; /* z0 tracks a possible raw value of 0, z1 tracks a possible raw value of P */ uint64_t z0, z1; /* Reduce t4 at the start so there will be at most a single carry from the first pass */ uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL; /* The first pass ensures the magnitude is 1, ... */ t0 += x * 0x1000003D1ULL; t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL; z0 = t0; z1 = t0 ^ 0x1000003D0ULL; t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; z0 |= t1; z1 &= t1; t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; z0 |= t2; z1 &= t2; t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; z0 |= t3; z1 &= t3; z0 |= t4; z1 &= t4 ^ 0xF000000000000ULL; /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */ VERIFY_CHECK(t4 >> 49 == 0); return (z0 == 0) | (z1 == 0xFFFFFFFFFFFFFULL); } static int secp256k1_fe_normalizes_to_zero_var(secp256k1_fe_t *r) { uint64_t t0, t1, t2, t3, t4; uint64_t z0, z1; uint64_t x; t0 = r->n[0]; t4 = r->n[4]; /* Reduce t4 at the start so there will be at most a single carry from the first pass */ x = t4 >> 48; /* The first pass ensures the magnitude is 1, ... */ t0 += x * 0x1000003D1ULL; /* z0 tracks a possible raw value of 0, z1 tracks a possible raw value of P */ z0 = t0 & 0xFFFFFFFFFFFFFULL; z1 = z0 ^ 0x1000003D0ULL; /* Fast return path should catch the majority of cases */ if ((z0 != 0ULL) & (z1 != 0xFFFFFFFFFFFFFULL)) { return 0; } t1 = r->n[1]; t2 = r->n[2]; t3 = r->n[3]; t4 &= 0x0FFFFFFFFFFFFULL; t1 += (t0 >> 52); t0 = z0; t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; z0 |= t1; z1 &= t1; t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; z0 |= t2; z1 &= t2; t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; z0 |= t3; z1 &= t3; z0 |= t4; z1 &= t4 ^ 0xF000000000000ULL; /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */ VERIFY_CHECK(t4 >> 49 == 0); return (z0 == 0) | (z1 == 0xFFFFFFFFFFFFFULL); } SECP256K1_INLINE static void secp256k1_fe_set_int(secp256k1_fe_t *r, int a) { r->n[0] = a; r->n[1] = r->n[2] = r->n[3] = r->n[4] = 0; #ifdef VERIFY r->magnitude = 1; r->normalized = 1; secp256k1_fe_verify(r); #endif } SECP256K1_INLINE static int secp256k1_fe_is_zero(const secp256k1_fe_t *a) { const uint64_t *t = a->n; #ifdef VERIFY VERIFY_CHECK(a->normalized); secp256k1_fe_verify(a); #endif return (t[0] | t[1] | t[2] | t[3] | t[4]) == 0; } SECP256K1_INLINE static int secp256k1_fe_is_odd(const secp256k1_fe_t *a) { #ifdef VERIFY VERIFY_CHECK(a->normalized); secp256k1_fe_verify(a); #endif return a->n[0] & 1; } SECP256K1_INLINE static void secp256k1_fe_clear(secp256k1_fe_t *a) { int i; #ifdef VERIFY a->magnitude = 0; a->normalized = 1; #endif for (i=0; i<5; i++) { a->n[i] = 0; } } static int secp256k1_fe_cmp_var(const secp256k1_fe_t *a, const secp256k1_fe_t *b) { int i; #ifdef VERIFY VERIFY_CHECK(a->normalized); VERIFY_CHECK(b->normalized); secp256k1_fe_verify(a); secp256k1_fe_verify(b); #endif for (i = 4; i >= 0; i--) { if (a->n[i] > b->n[i]) { return 1; } if (a->n[i] < b->n[i]) { return -1; } } return 0; } static int secp256k1_fe_set_b32(secp256k1_fe_t *r, const unsigned char *a) { int i; r->n[0] = r->n[1] = r->n[2] = r->n[3] = r->n[4] = 0; for (i=0; i<32; i++) { int j; for (j=0; j<2; j++) { int limb = (8*i+4*j)/52; int shift = (8*i+4*j)%52; r->n[limb] |= (uint64_t)((a[31-i] >> (4*j)) & 0xF) << shift; } } if (r->n[4] == 0x0FFFFFFFFFFFFULL && (r->n[3] & r->n[2] & r->n[1]) == 0xFFFFFFFFFFFFFULL && r->n[0] >= 0xFFFFEFFFFFC2FULL) { return 0; } #ifdef VERIFY r->magnitude = 1; r->normalized = 1; secp256k1_fe_verify(r); #endif return 1; } /** Convert a field element to a 32-byte big endian value. Requires the input to be normalized */ static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe_t *a) { int i; #ifdef VERIFY VERIFY_CHECK(a->normalized); secp256k1_fe_verify(a); #endif for (i=0; i<32; i++) { int j; int c = 0; for (j=0; j<2; j++) { int limb = (8*i+4*j)/52; int shift = (8*i+4*j)%52; c |= ((a->n[limb] >> shift) & 0xF) << (4 * j); } r[31-i] = c; } } SECP256K1_INLINE static void secp256k1_fe_negate(secp256k1_fe_t *r, const secp256k1_fe_t *a, int m) { #ifdef VERIFY VERIFY_CHECK(a->magnitude <= m); secp256k1_fe_verify(a); #endif r->n[0] = 0xFFFFEFFFFFC2FULL * 2 * (m + 1) - a->n[0]; r->n[1] = 0xFFFFFFFFFFFFFULL * 2 * (m + 1) - a->n[1]; r->n[2] = 0xFFFFFFFFFFFFFULL * 2 * (m + 1) - a->n[2]; r->n[3] = 0xFFFFFFFFFFFFFULL * 2 * (m + 1) - a->n[3]; r->n[4] = 0x0FFFFFFFFFFFFULL * 2 * (m + 1) - a->n[4]; #ifdef VERIFY r->magnitude = m + 1; r->normalized = 0; secp256k1_fe_verify(r); #endif } SECP256K1_INLINE static void secp256k1_fe_mul_int(secp256k1_fe_t *r, int a) { r->n[0] *= a; r->n[1] *= a; r->n[2] *= a; r->n[3] *= a; r->n[4] *= a; #ifdef VERIFY r->magnitude *= a; r->normalized = 0; secp256k1_fe_verify(r); #endif } SECP256K1_INLINE static void secp256k1_fe_add(secp256k1_fe_t *r, const secp256k1_fe_t *a) { #ifdef VERIFY secp256k1_fe_verify(a); #endif r->n[0] += a->n[0]; r->n[1] += a->n[1]; r->n[2] += a->n[2]; r->n[3] += a->n[3]; r->n[4] += a->n[4]; #ifdef VERIFY r->magnitude += a->magnitude; r->normalized = 0; secp256k1_fe_verify(r); #endif } static void secp256k1_fe_mul(secp256k1_fe_t *r, const secp256k1_fe_t *a, const secp256k1_fe_t * SECP256K1_RESTRICT b) { #ifdef VERIFY VERIFY_CHECK(a->magnitude <= 8); VERIFY_CHECK(b->magnitude <= 8); secp256k1_fe_verify(a); secp256k1_fe_verify(b); VERIFY_CHECK(r != b); #endif secp256k1_fe_mul_inner(r->n, a->n, b->n); #ifdef VERIFY r->magnitude = 1; r->normalized = 0; secp256k1_fe_verify(r); #endif } static void secp256k1_fe_sqr(secp256k1_fe_t *r, const secp256k1_fe_t *a) { #ifdef VERIFY VERIFY_CHECK(a->magnitude <= 8); secp256k1_fe_verify(a); #endif secp256k1_fe_sqr_inner(r->n, a->n); #ifdef VERIFY r->magnitude = 1; r->normalized = 0; secp256k1_fe_verify(r); #endif } static SECP256K1_INLINE void secp256k1_fe_cmov(secp256k1_fe_t *r, const secp256k1_fe_t *a, int flag) { uint64_t mask0, mask1; mask0 = flag + ~((uint64_t)0); mask1 = ~mask0; r->n[0] = (r->n[0] & mask0) | (a->n[0] & mask1); r->n[1] = (r->n[1] & mask0) | (a->n[1] & mask1); r->n[2] = (r->n[2] & mask0) | (a->n[2] & mask1); r->n[3] = (r->n[3] & mask0) | (a->n[3] & mask1); r->n[4] = (r->n[4] & mask0) | (a->n[4] & mask1); #ifdef VERIFY r->magnitude = (r->magnitude & mask0) | (a->magnitude & mask1); r->normalized = (r->normalized & mask0) | (a->normalized & mask1); #endif } static SECP256K1_INLINE void secp256k1_fe_storage_cmov(secp256k1_fe_storage_t *r, const secp256k1_fe_storage_t *a, int flag) { uint64_t mask0, mask1; mask0 = flag + ~((uint64_t)0); mask1 = ~mask0; r->n[0] = (r->n[0] & mask0) | (a->n[0] & mask1); r->n[1] = (r->n[1] & mask0) | (a->n[1] & mask1); r->n[2] = (r->n[2] & mask0) | (a->n[2] & mask1); r->n[3] = (r->n[3] & mask0) | (a->n[3] & mask1); } static void secp256k1_fe_to_storage(secp256k1_fe_storage_t *r, const secp256k1_fe_t *a) { #ifdef VERIFY VERIFY_CHECK(a->normalized); #endif r->n[0] = a->n[0] | a->n[1] << 52; r->n[1] = a->n[1] >> 12 | a->n[2] << 40; r->n[2] = a->n[2] >> 24 | a->n[3] << 28; r->n[3] = a->n[3] >> 36 | a->n[4] << 16; } static SECP256K1_INLINE void secp256k1_fe_from_storage(secp256k1_fe_t *r, const secp256k1_fe_storage_t *a) { r->n[0] = a->n[0] & 0xFFFFFFFFFFFFFULL; r->n[1] = a->n[0] >> 52 | ((a->n[1] << 12) & 0xFFFFFFFFFFFFFULL); r->n[2] = a->n[1] >> 40 | ((a->n[2] << 24) & 0xFFFFFFFFFFFFFULL); r->n[3] = a->n[2] >> 28 | ((a->n[3] << 36) & 0xFFFFFFFFFFFFFULL); r->n[4] = a->n[3] >> 16; #ifdef VERIFY r->magnitude = 1; r->normalized = 1; #endif } #endif