/*
This file is part of cpp-ethereum.
cpp-ethereum is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
cpp-ethereum is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with cpp-ethereum. If not, see .
*/
/** @file BlockQueue.cpp
* @author Gav Wood
* @date 2014
*/
#include "BlockQueue.h"
#include
#include
#include
#include
#include "BlockChain.h"
using namespace std;
using namespace dev;
using namespace dev::eth;
#ifdef _WIN32
const char* BlockQueueChannel::name() { return EthOrange "[]>"; }
#else
const char* BlockQueueChannel::name() { return EthOrange "▣┅▶"; }
#endif
BlockQueue::BlockQueue()
{
// Allow some room for other activity
unsigned verifierThreads = std::max(thread::hardware_concurrency(), 3U) - 2U;
for (unsigned i = 0; i < verifierThreads; ++i)
m_verifiers.emplace_back([=](){
setThreadName("verifier" + toString(i));
this->verifierBody();
});
}
BlockQueue::~BlockQueue()
{
m_deleting = true;
m_moreToVerify.notify_all();
for (auto& i: m_verifiers)
i.join();
}
void BlockQueue::verifierBody()
{
while (!m_deleting)
{
std::pair work;
{
unique_lock l(m_verification);
m_moreToVerify.wait(l, [&](){ return !m_unverified.empty() || m_deleting; });
if (m_deleting)
return;
swap(work, m_unverified.front());
m_unverified.pop_front();
BlockInfo bi;
bi.mixHash = work.first;
m_verifying.push_back(make_pair(bi, bytes()));
}
std::pair res;
swap(work.second, res.second);
try {
res.first.populate(res.second, CheckEverything, work.first);
res.first.verifyInternals(&res.second);
RLP r(&res.second);
for (auto const& uncle: r[2])
BlockInfo().populateFromHeader(RLP(uncle.data()), CheckEverything);
}
catch (...)
{
// bad block.
{
// has to be this order as that's how invariants() assumes.
WriteGuard l2(m_lock);
unique_lock l(m_verification);
m_readySet.erase(work.first);
m_knownBad.insert(work.first);
}
unique_lock l(m_verification);
for (auto it = m_verifying.begin(); it != m_verifying.end(); ++it)
if (it->first.mixHash == work.first)
{
m_verifying.erase(it);
goto OK1;
}
cwarn << "GAA BlockQueue corrupt: job cancelled but cannot be found in m_verifying queue.";
OK1:;
continue;
}
bool ready = false;
{
unique_lock l(m_verification);
if (m_verifying.front().first.mixHash == work.first)
{
// we're next!
m_verifying.pop_front();
m_verified.push_back(move(res));
while (m_verifying.size() && !m_verifying.front().second.empty())
{
m_verified.push_back(move(m_verifying.front()));
m_verifying.pop_front();
}
ready = true;
}
else
{
for (auto& i: m_verifying)
if (i.first.mixHash == work.first)
{
i = move(res);
goto OK;
}
cwarn << "GAA BlockQueue corrupt: job finished but cannot be found in m_verifying queue.";
OK:;
}
}
if (ready)
m_onReady();
}
}
ImportResult BlockQueue::import(bytesConstRef _block, BlockChain const& _bc, bool _isOurs)
{
// Check if we already know this block.
h256 h = BlockInfo::headerHash(_block);
cblockq << "Queuing block" << h << "for import...";
UpgradableGuard l(m_lock);
if (m_readySet.count(h) || m_drainingSet.count(h) || m_unknownSet.count(h) || m_knownBad.count(h))
{
// Already know about this one.
cblockq << "Already known.";
return ImportResult::AlreadyKnown;
}
// VERIFY: populates from the block and checks the block is internally coherent.
BlockInfo bi;
try
{
// TODO: quick verify
bi.populate(_block);
bi.verifyInternals(_block);
}
catch (Exception const& _e)
{
cwarn << "Ignoring malformed block: " << diagnostic_information(_e);
return ImportResult::Malformed;
}
// Check block doesn't already exist first!
if (_bc.details(h))
{
cblockq << "Already known in chain.";
return ImportResult::AlreadyInChain;
}
UpgradeGuard ul(l);
DEV_INVARIANT_CHECK;
// Check it's not in the future
(void)_isOurs;
if (bi.timestamp > (u256)time(0)/* && !_isOurs*/)
{
m_future.insert(make_pair((unsigned)bi.timestamp, make_pair(h, _block.toBytes())));
char buf[24];
time_t bit = (unsigned)bi.timestamp;
if (strftime(buf, 24, "%X", localtime(&bit)) == 0)
buf[0] = '\0'; // empty if case strftime fails
cblockq << "OK - queued for future [" << bi.timestamp << "vs" << time(0) << "] - will wait until" << buf;
return ImportResult::FutureTime;
}
else
{
// We now know it.
if (m_knownBad.count(bi.parentHash))
{
m_knownBad.insert(bi.hash());
// bad parent; this is bad too, note it as such
return ImportResult::BadChain;
}
else if (!m_readySet.count(bi.parentHash) && !m_drainingSet.count(bi.parentHash) && !_bc.isKnown(bi.parentHash))
{
// We don't know the parent (yet) - queue it up for later. It'll get resent to us if we find out about its ancestry later on.
cblockq << "OK - queued as unknown parent:" << bi.parentHash;
m_unknown.insert(make_pair(bi.parentHash, make_pair(h, _block.toBytes())));
m_unknownSet.insert(h);
return ImportResult::UnknownParent;
}
else
{
// If valid, append to blocks.
cblockq << "OK - ready for chain insertion.";
DEV_GUARDED(m_verification)
m_unverified.push_back(make_pair(h, _block.toBytes()));
m_moreToVerify.notify_one();
m_readySet.insert(h);
noteReady_WITH_LOCK(h);
return ImportResult::Success;
}
}
}
bool BlockQueue::doneDrain(h256s const& _bad)
{
WriteGuard l(m_lock);
DEV_INVARIANT_CHECK;
m_drainingSet.clear();
if (_bad.size())
{
vector> old;
DEV_GUARDED(m_verification)
swap(m_verified, old);
for (auto& b: old)
{
if (m_knownBad.count(b.first.parentHash))
{
m_knownBad.insert(b.first.hash());
m_readySet.erase(b.first.hash());
}
else
DEV_GUARDED(m_verification)
m_verified.push_back(std::move(b));
}
}
m_knownBad += _bad;
return !m_readySet.empty();
}
void BlockQueue::tick(BlockChain const& _bc)
{
vector> todo;
{
UpgradableGuard l(m_lock);
if (m_future.empty())
return;
cblockq << "Checking past-future blocks...";
unsigned t = time(0);
if (t <= m_future.begin()->first)
return;
cblockq << "Past-future blocks ready.";
{
UpgradeGuard l2(l);
DEV_INVARIANT_CHECK;
auto end = m_future.lower_bound(t);
for (auto i = m_future.begin(); i != end; ++i)
todo.push_back(move(i->second));
m_future.erase(m_future.begin(), end);
}
}
cblockq << "Importing" << todo.size() << "past-future blocks.";
for (auto const& b: todo)
import(&b.second, _bc);
}
template T advanced(T _t, unsigned _n)
{
std::advance(_t, _n);
return _t;
}
QueueStatus BlockQueue::blockStatus(h256 const& _h) const
{
ReadGuard l(m_lock);
return
m_readySet.count(_h) ?
QueueStatus::Ready :
m_drainingSet.count(_h) ?
QueueStatus::Importing :
m_unknownSet.count(_h) ?
QueueStatus::UnknownParent :
m_knownBad.count(_h) ?
QueueStatus::Bad :
QueueStatus::Unknown;
}
void BlockQueue::drain(std::vector>& o_out, unsigned _max)
{
WriteGuard l(m_lock);
DEV_INVARIANT_CHECK;
if (m_drainingSet.empty())
{
DEV_GUARDED(m_verification)
{
o_out.resize(min(_max, m_verified.size()));
for (unsigned i = 0; i < o_out.size(); ++i)
swap(o_out[i], m_verified[i]);
m_verified.erase(m_verified.begin(), advanced(m_verified.begin(), o_out.size()));
}
for (auto const& bs: o_out)
{
// TODO: @optimise use map rather than vector & set.
auto h = bs.first.hash();
m_drainingSet.insert(h);
m_readySet.erase(h);
}
}
}
bool BlockQueue::invariants() const
{
Guard l(m_verification);
return m_readySet.size() == m_verified.size() + m_unverified.size() + m_verifying.size();
}
void BlockQueue::noteReady_WITH_LOCK(h256 const& _good)
{
DEV_INVARIANT_CHECK;
list goodQueue(1, _good);
bool notify = false;
while (!goodQueue.empty())
{
auto r = m_unknown.equal_range(goodQueue.front());
goodQueue.pop_front();
for (auto it = r.first; it != r.second; ++it)
{
DEV_GUARDED(m_verification)
m_unverified.push_back(it->second);
auto newReady = it->second.first;
m_unknownSet.erase(newReady);
m_readySet.insert(newReady);
goodQueue.push_back(newReady);
notify = true;
}
m_unknown.erase(r.first, r.second);
}
if (notify)
m_moreToVerify.notify_all();
}
void BlockQueue::retryAllUnknown()
{
WriteGuard l(m_lock);
DEV_INVARIANT_CHECK;
for (auto it = m_unknown.begin(); it != m_unknown.end(); ++it)
{
DEV_GUARDED(m_verification)
m_unverified.push_back(it->second);
auto newReady = it->second.first;
m_unknownSet.erase(newReady);
m_readySet.insert(newReady);
m_moreToVerify.notify_one();
}
m_unknown.clear();
m_moreToVerify.notify_all();
}