/* This file is part of cpp-ethereum. cpp-ethereum is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. cpp-ethereum is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with cpp-ethereum. If not, see . */ /** @file Instruction.cpp * @author Gav Wood * @date 2014 */ #include "Instruction.h" #include #include "Common.h" using namespace std; using namespace eth; static string readQuoted(char const*& o_d, char const* _e) { string ret; bool escaped = 0; for (++o_d; o_d != _e && (escaped || *o_d != '"'); ++o_d) if (!escaped && *o_d == '\\') escaped = true; else ret.push_back(*o_d); if (o_d != _e) ++o_d; // skip last " return ret; } static u256 readNumeric(string _v, bool _quiet) { u256 x = 1; for (auto const& i: units()) if (boost::algorithm::ends_with(_v, i.second)) { _v = _v.substr(0, _v.size() - i.second.size()); x = i.first; break; } try { return x * u256(_v); } catch (...) { if (!_quiet) cwarn << "Invalid numeric" << _v; } return 0; } u256s eth::assemble(std::string const& _code, bool _quiet) { u256s ret; map known; map req; char const* d = _code.data(); char const* e = _code.data() + _code.size(); while (d != e) { // skip to next token for (; d != e && !isalnum(*d) && *d != '_' && *d != ':' && *d != '"'; ++d) {} if (d == e) break; if (*d == '"') { string s = readQuoted(d, e); if (s.size() > 32) { if (!_quiet) cwarn << "String literal > 32 characters. Cropping."; s.resize(32); } h256 valHash; memcpy(valHash.data(), s.data(), s.size()); memset(valHash.data() + s.size(), 0, 32 - s.size()); ret.push_back((u256)valHash); } else { char const* s = d; for (; d != e && (isalnum(*d) || *d == '_' || *d == ':' || *d == '"'); ++d) {} string t = string(s, d - s); if (isdigit(t[0])) ret.push_back(readNumeric(t, _quiet)); else if (t.back() == ':') known[t.substr(0, t.size() - 1)] = (unsigned)ret.size(); else { auto it = c_instructions.find(boost::algorithm::to_upper_copy(t)); if (it != c_instructions.end()) ret.push_back((u256)it->second); else { req[(unsigned)ret.size()] = t; ret.push_back(0); } } } } for (auto i: req) if (known.count(i.second)) ret[i.first] = known[i.second]; else if (!_quiet) cwarn << "Unknown assembler token" << i.second << "at address" << i.first; return ret; } static void appendCode(u256s& o_code, vector& o_locs, u256s _code, vector& _locs) { o_locs.reserve(o_locs.size() + _locs.size()); for (auto i: _locs) { _code[i] += (u256)o_code.size(); o_locs.push_back(i + (unsigned)o_code.size()); } o_code.reserve(o_code.size() + _code.size()); for (auto i: _code) o_code.push_back(i); } static bool compileLispFragment(char const*& d, char const* e, bool _quiet, u256s& o_code, vector& o_locs) { std::map const c_arith = { { "+", Instruction::ADD }, { "-", Instruction::SUB }, { "*", Instruction::MUL }, { "/", Instruction::DIV }, { "%", Instruction::MOD } }; std::map const c_binary = { { "<", Instruction::LT }, { "<=", Instruction::LE }, { ">", Instruction::GT }, { ">=", Instruction::GE }, { "=", Instruction::EQ }, { "!=", Instruction::NOT } }; std::set const c_allowed = { '+', '-', '*', '/', '%', '<', '>', '=', '!' }; bool exec = false; while (d != e) { // skip to next token for (; d != e && !isalnum(*d) && *d != '(' && *d != ')' && *d != '_' && *d != '"' && !c_allowed.count(*d) && *d != ';'; ++d) {} if (d == e) break; switch (*d) { case ';': for (; d != e && *d != '\n'; ++d) {} break; case '(': exec = true; ++d; break; case ')': if (exec) { ++d; return true; } else // unexpected - return false as we don't know what to do with it. return false; default: { bool haveLiteral = false; u256 literalValue = 0; string t; if (*d == '"') { string s = readQuoted(d, e); if (s.size() > 32) { if (!_quiet) cwarn << "String literal > 32 characters. Cropping."; s.resize(32); } h256 valHash; memcpy(valHash.data(), s.data(), s.size()); memset(valHash.data() + s.size(), 0, 32 - s.size()); literalValue = (u256)valHash; haveLiteral = true; } else { char const* s = d; for (; d != e && (isalnum(*d) || *d == '_' || c_allowed.count(*d)); ++d) {} t = string(s, d - s); if (isdigit(t[0])) { literalValue = readNumeric(t, _quiet); haveLiteral = true; } } if (haveLiteral) { bool bareLoad = true; if (exec) { u256s codes; vector locs; if (compileLispFragment(d, e, _quiet, codes, locs)) { appendCode(o_code, o_locs, codes, locs); while (compileLispFragment(d, e, _quiet, codes, locs)) if (!_quiet) cwarn << "Additional items in bare store. Ignoring."; bareLoad = false; } } o_code.push_back(Instruction::PUSH); o_code.push_back(literalValue); if (exec) o_code.push_back(bareLoad ? Instruction::SLOAD : Instruction::SSTORE); } else { boost::algorithm::to_upper(t); if (t == "IF") { // Compile all the code... u256s codes[4]; vector locs[4]; for (int i = 0; i < 3; ++i) if (!compileLispFragment(d, e, _quiet, codes[i], locs[i])) return false; if (compileLispFragment(d, e, _quiet, codes[3], locs[3])) return false; // Push the positive location. o_code.push_back(Instruction::PUSH); unsigned posLocation = (unsigned)o_code.size(); o_locs.push_back(posLocation); o_code.push_back(0); // First fragment - predicate appendCode(o_code, o_locs, codes[0], locs[0]); // Jump to positive if true. o_code.push_back(Instruction::JMPI); // Second fragment - negative. appendCode(o_code, o_locs, codes[2], locs[2]); // Jump to end after negative. o_code.push_back(Instruction::PUSH); unsigned endLocation = (unsigned)o_code.size(); o_locs.push_back(endLocation); o_code.push_back(0); o_code.push_back(Instruction::JMP); // Third fragment - positive. o_code[posLocation] = o_code.size(); appendCode(o_code, o_locs, codes[1], locs[1]); // At end now. o_code[endLocation] = o_code.size(); } else if (t == "WHEN" || t == "UNLESS") { // Compile all the code... u256s codes[3]; vector locs[3]; for (int i = 0; i < 2; ++i) if (!compileLispFragment(d, e, _quiet, codes[i], locs[i])) return false; if (compileLispFragment(d, e, _quiet, codes[2], locs[2])) return false; // Push the positive location. o_code.push_back(Instruction::PUSH); unsigned endLocation = (unsigned)o_code.size(); o_locs.push_back(endLocation); o_code.push_back(0); // First fragment - predicate appendCode(o_code, o_locs, codes[0], locs[0]); // Jump to end... if (t == "WHEN") o_code.push_back(Instruction::NOT); o_code.push_back(Instruction::JMPI); // Second fragment - negative. appendCode(o_code, o_locs, codes[1], locs[1]); // At end now. o_code[endLocation] = o_code.size(); } else if (t == "FOR") { // Compile all the code... u256s codes[3]; vector locs[3]; for (int i = 0; i < 2; ++i) if (!compileLispFragment(d, e, _quiet, codes[i], locs[i])) return false; if (compileLispFragment(d, e, _quiet, codes[2], locs[2])) return false; unsigned startLocation = (unsigned)o_code.size(); // Push the positive location. o_code.push_back(Instruction::PUSH); unsigned endInsertion = (unsigned)o_code.size(); o_locs.push_back(endInsertion); o_code.push_back(0); // First fragment - predicate appendCode(o_code, o_locs, codes[0], locs[0]); // Jump to positive if true. o_code.push_back(Instruction::NOT); o_code.push_back(Instruction::JMPI); // Second fragment - negative. appendCode(o_code, o_locs, codes[1], locs[1]); // Jump to end after negative. o_code.push_back(Instruction::PUSH); o_locs.push_back((unsigned)o_code.size()); o_code.push_back(startLocation); o_code.push_back(Instruction::JMP); // At end now. o_code[endInsertion] = o_code.size(); } else if (t == "SEQ") { while (d != e) { u256s codes; vector locs; if (compileLispFragment(d, e, _quiet, codes, locs)) appendCode(o_code, o_locs, codes, locs); else break; } } else if (t == "AND") { vector codes; vector> locs; while (d != e) { codes.resize(codes.size() + 1); locs.resize(locs.size() + 1); if (!compileLispFragment(d, e, _quiet, codes.back(), locs.back())) break; } // last one is empty. if (codes.size() < 2) return false; codes.pop_back(); locs.pop_back(); vector ends; if (codes.size() > 1) { o_code.push_back(Instruction::PUSH); o_code.push_back(0); for (unsigned i = 1; i < codes.size(); ++i) { // Push the false location. o_code.push_back(Instruction::PUSH); ends.push_back((unsigned)o_code.size()); o_locs.push_back(ends.back()); o_code.push_back(0); // Check if true - predicate appendCode(o_code, o_locs, codes[i - 1], locs[i - 1]); // Jump to end... o_code.push_back(Instruction::NOT); o_code.push_back(Instruction::JMPI); } o_code.push_back(Instruction::POP); } // Check if true - predicate appendCode(o_code, o_locs, codes.back(), locs.back()); // At end now. for (auto i: ends) o_code[i] = o_code.size(); } else if (t == "OR") { vector codes; vector> locs; while (d != e) { codes.resize(codes.size() + 1); locs.resize(locs.size() + 1); if (!compileLispFragment(d, e, _quiet, codes.back(), locs.back())) break; } // last one is empty. if (codes.size() < 2) return false; codes.pop_back(); locs.pop_back(); vector ends; if (codes.size() > 1) { o_code.push_back(Instruction::PUSH); o_code.push_back(1); for (unsigned i = 1; i < codes.size(); ++i) { // Push the false location. o_code.push_back(Instruction::PUSH); ends.push_back((unsigned)o_code.size()); o_locs.push_back(ends.back()); o_code.push_back(0); // Check if true - predicate appendCode(o_code, o_locs, codes[i - 1], locs[i - 1]); // Jump to end... o_code.push_back(Instruction::JMPI); } o_code.push_back(Instruction::POP); } // Check if true - predicate appendCode(o_code, o_locs, codes.back(), locs.back()); // At end now. for (auto i: ends) o_code[i] = o_code.size(); } else { auto it = c_instructions.find(t); if (it != c_instructions.end()) { if (exec) { vector>> codes(1); while (d != e && compileLispFragment(d, e, _quiet, codes.back().first, codes.back().second)) codes.push_back(pair>()); for (auto it = codes.rbegin(); it != codes.rend(); ++it) appendCode(o_code, o_locs, it->first, it->second); o_code.push_back((u256)it->second); } else { o_code.push_back(Instruction::PUSH); o_code.push_back(it->second); } } else { auto it = c_arith.find(t); if (it != c_arith.end()) { int i = 0; while (d != e) { u256s codes; vector locs; if (compileLispFragment(d, e, _quiet, codes, locs)) { appendCode(o_code, o_locs, codes, locs); if (i) o_code.push_back((u256)it->second); ++i; } else break; } } else { auto it = c_binary.find(t); if (it != c_binary.end()) { vector>> codes(1); while (d != e && compileLispFragment(d, e, _quiet, codes.back().first, codes.back().second)) codes.push_back(pair>()); codes.pop_back(); int i = codes.size(); if (i > 2) cwarn << "Greater than two arguments given to binary operator" << t << "; using first two"; for (auto it = codes.rbegin(); it != codes.rend(); ++it) if (--i < 2) appendCode(o_code, o_locs, it->first, it->second); if (it->second == Instruction::NOT) o_code.push_back(Instruction::EQ); o_code.push_back((u256)it->second); } else if (!_quiet) cwarn << "Unknown assembler token" << t; } } } } if (!exec) return true; } } } return false; } u256s eth::compileLisp(std::string const& _code, bool _quiet) { char const* d = _code.data(); char const* e = _code.data() + _code.size(); u256s ret; vector locs; compileLispFragment(d, e, _quiet, ret, locs); return ret; } string eth::disassemble(u256s const& _mem) { stringstream ret; uint numerics = 0; for (auto it = _mem.begin(); it != _mem.end(); ++it) { u256 n = *it; auto iit = c_instructionInfo.find((Instruction)(uint)n); if (numerics || iit == c_instructionInfo.end() || (u256)(uint)iit->first != n) // not an instruction or expecting an argument... { if (numerics) numerics--; ret << "0x" << hex << n << " "; } else { auto const& ii = iit->second; ret << ii.name << " "; numerics = ii.additional; } } return ret.str(); }