/* This file is part of cpp-ethereum. cpp-ethereum is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. cpp-ethereum is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with cpp-ethereum. If not, see . */ /** @file State.h * @author Gav Wood * @date 2014 */ #pragma once #include #include #include #include #include #include #include #include #include #include #include #include "TransactionQueue.h" #include "Account.h" #include "Transaction.h" #include "TransactionReceipt.h" #include "AccountDiff.h" namespace dev { namespace test { class ImportTest; class StateLoader; } namespace eth { class BlockChain; class State; struct VerifiedBlockRef; struct StateChat: public LogChannel { static const char* name(); static const int verbosity = 4; }; struct StateTrace: public LogChannel { static const char* name(); static const int verbosity = 5; }; struct StateDetail: public LogChannel { static const char* name(); static const int verbosity = 14; }; struct StateSafeExceptions: public LogChannel { static const char* name(); static const int verbosity = 21; }; enum class BaseState { PreExisting, Empty, CanonGenesis }; enum class TransactionPriority { Lowest = 0, Low = 2, Medium = 4, High = 6, Highest = 8 }; class GasPricer { public: GasPricer() = default; virtual ~GasPricer() = default; virtual u256 ask(State const&) const = 0; virtual u256 bid(TransactionPriority _p = TransactionPriority::Medium) const = 0; virtual void update(BlockChain const&) {} }; class TrivialGasPricer: public GasPricer { public: TrivialGasPricer() = default; TrivialGasPricer(u256 const& _ask, u256 const& _bid): m_ask(_ask), m_bid(_bid) {} void setAsk(u256 const& _ask) { m_ask = _ask; } void setBid(u256 const& _bid) { m_bid = _bid; } u256 ask() const { return m_ask; } u256 ask(State const&) const override { return m_ask; } u256 bid(TransactionPriority = TransactionPriority::Medium) const override { return m_bid; } private: u256 m_ask = 10 * szabo; u256 m_bid = 10 * szabo; }; enum class Permanence { Reverted, Committed }; /** * @brief Model of the current state of the ledger. * Maintains current ledger (m_current) as a fast hash-map. This is hashed only when required (i.e. to create or verify a block). * Should maintain ledger as of last N blocks, also, in case we end up on the wrong branch. */ class State { friend class ExtVM; friend class dev::test::ImportTest; friend class dev::test::StateLoader; friend class Executive; public: /// Default constructor; creates with a blank database prepopulated with the genesis block. State(): State(OverlayDB(), BaseState::Empty) {} /// Basic state object from database. /// Use the default when you already have a database and you just want to make a State object /// which uses it. If you have no preexisting database then set BaseState to something other /// than BaseState::PreExisting in order to prepopulate the Trie. /// You can also set the coinbase address. explicit State(OverlayDB const& _db, BaseState _bs = BaseState::PreExisting, Address _coinbaseAddress = Address()); /// Construct state object from arbitrary point in blockchain. State(OverlayDB const& _db, BlockChain const& _bc, h256 _hash, ImportRequirements::value _ir = ImportRequirements::Default); /// Copy state object. State(State const& _s); /// Copy state object. State& operator=(State const& _s); ~State(); /// Set the coinbase address for any transactions we do. /// This causes a complete reset of current block. void setAddress(Address _coinbaseAddress) { m_ourAddress = _coinbaseAddress; resetCurrent(); } Address address() const { return m_ourAddress; } /// Open a DB - useful for passing into the constructor & keeping for other states that are necessary. static OverlayDB openDB(std::string _path, WithExisting _we = WithExisting::Trust); static OverlayDB openDB(WithExisting _we = WithExisting::Trust) { return openDB(std::string(), _we); } OverlayDB const& db() const { return m_db; } OverlayDB& db() { return m_db; } /// @returns the set containing all addresses currently in use in Ethereum. /// @throws InterfaceNotSupported if compiled without ETH_FATDB. std::unordered_map addresses() const; /// Get the header information on the present block. BlockInfo const& info() const { return m_currentBlock; } /// @brief Checks that mining the current object will result in a valid block. /// Effectively attempts to import the serialised block. /// @returns true if all is ok. If it's false, worry. bool amIJustParanoid(BlockChain const& _bc); /// Prepares the current state for mining. /// Commits all transactions into the trie, compiles uncles and transactions list, applies all /// rewards and populates the current block header with the appropriate hashes. /// The only thing left to do after this is to actually mine(). /// /// This may be called multiple times and without issue. void commitToMine(BlockChain const& _bc); /// @returns true iff commitToMine() has been called without any subsequest transactions added &c. bool isCommittedToMine() const { return m_committedToMine; } /// Pass in a solution to the proof-of-work. /// @returns true iff we were previously committed to mining. template bool completeMine(typename PoW::Solution const& _result) { if (!m_committedToMine) return false; PoW::assignResult(_result, m_currentBlock); cnote << "Completed" << m_currentBlock.headerHash(WithoutNonce) << m_currentBlock.nonce << m_currentBlock.difficulty << PoW::verify(m_currentBlock); completeMine(); return true; } /// Get the complete current block, including valid nonce. /// Only valid after mine() returns true. bytes const& blockData() const { return m_currentBytes; } /// Sync our transactions, killing those from the queue that we have and assimilating those that we don't. /// @returns a list of receipts one for each transaction placed from the queue into the state and bool, true iff there are more transactions to be processed. std::pair sync(BlockChain const& _bc, TransactionQueue& _tq, GasPricer const& _gp, unsigned _msTimeout = 100); /// Execute a given transaction. /// This will append @a _t to the transaction list and change the state accordingly. ExecutionResult execute(LastHashes const& _lh, Transaction const& _t, Permanence _p = Permanence::Committed, OnOpFunc const& _onOp = OnOpFunc()); /// Get the remaining gas limit in this block. u256 gasLimitRemaining() const { return m_currentBlock.gasLimit - gasUsed(); } /// Check if the address is in use. bool addressInUse(Address _address) const; /// Check if the address contains executable code. bool addressHasCode(Address _address) const; /// Get an account's balance. /// @returns 0 if the address has never been used. u256 balance(Address _id) const; /// Add some amount to balance. /// Will initialise the address if it has never been used. void addBalance(Address _id, u256 _amount); /** Subtract some amount from balance. * @throws NotEnoughCash if balance of @a _id is less than @a _value (or has never been used). * @note We use bigint here as we don't want any accidental problems with negative numbers. */ void subBalance(Address _id, bigint _value); /** * @brief Transfers "the balance @a _value between two accounts. * @param _from Account from which @a _value will be deducted. * @param _to Account to which @a _value will be added. * @param _value Amount to be transferred. */ void transferBalance(Address _from, Address _to, u256 _value) { subBalance(_from, _value); addBalance(_to, _value); } /// Get the root of the storage of an account. h256 storageRoot(Address _contract) const; /// Get the value of a storage position of an account. /// @returns 0 if no account exists at that address. u256 storage(Address _contract, u256 _memory) const; /// Set the value of a storage position of an account. void setStorage(Address _contract, u256 _location, u256 _value) { m_cache[_contract].setStorage(_location, _value); } /// Create a new contract. Address newContract(u256 _balance, bytes const& _code); /// Get the storage of an account. /// @note This is expensive. Don't use it unless you need to. /// @returns std::unordered_map if no account exists at that address. std::unordered_map storage(Address _contract) const; /// Get the code of an account. /// @returns bytes() if no account exists at that address. bytes const& code(Address _contract) const; /// Get the code hash of an account. /// @returns EmptySHA3 if no account exists at that address or if there is no code associated with the address. h256 codeHash(Address _contract) const; /// Note that the given address is sending a transaction and thus increment the associated ticker. void noteSending(Address _id); /// Get the number of transactions a particular address has sent (used for the transaction nonce). /// @returns 0 if the address has never been used. u256 transactionsFrom(Address _address) const; /// The hash of the root of our state tree. h256 rootHash() const { return m_state.root(); } /// Get the list of pending transactions. Transactions const& pending() const { return m_transactions; } /// Get the list of hashes of pending transactions. h256Hash const& pendingHashes() const { return m_transactionSet; } /// Get the transaction receipt for the transaction of the given index. TransactionReceipt const& receipt(unsigned _i) const { return m_receipts[_i]; } /// Get the list of pending transactions. LogEntries const& log(unsigned _i) const { return m_receipts[_i].log(); } /// Get the bloom filter of all logs that happened in the block. LogBloom logBloom() const; /// Get the bloom filter of a particular transaction that happened in the block. LogBloom const& logBloom(unsigned _i) const { return m_receipts[_i].bloom(); } /// Get the State immediately after the given number of pending transactions have been applied. /// If (_i == 0) returns the initial state of the block. /// If (_i == pending().size()) returns the final state of the block, prior to rewards. State fromPending(unsigned _i) const; /// @returns the StateDiff caused by the pending transaction of index @a _i. StateDiff pendingDiff(unsigned _i) const { return fromPending(_i).diff(fromPending(_i + 1)); } /// @return the difference between this state (origin) and @a _c (destination). StateDiff diff(State const& _c) const; /// Sync our state with the block chain. /// This basically involves wiping ourselves if we've been superceded and rebuilding from the transaction queue. bool sync(BlockChain const& _bc); /// Sync with the block chain, but rather than synching to the latest block, instead sync to the given block. bool sync(BlockChain const& _bc, h256 _blockHash, BlockInfo const& _bi = BlockInfo(), ImportRequirements::value _ir = ImportRequirements::Default); /// Execute all transactions within a given block. /// @returns the additional total difficulty. u256 enactOn(VerifiedBlockRef const& _block, BlockChain const& _bc, ImportRequirements::value _ir = ImportRequirements::Default); /// Returns back to a pristine state after having done a playback. /// @arg _fullCommit if true flush everything out to disk. If false, this effectively only validates /// the block since all state changes are ultimately reversed. void cleanup(bool _fullCommit); /// Commit all changes waiting in the address cache to the DB. void commit(); /// Sets m_currentBlock to a clean state, (i.e. no change from m_previousBlock). void resetCurrent(); private: /** Commit to DB and build the final block if the previous call to mine()'s result is completion. * Typically looks like: * @code * while (notYetMined) * { * // lock * commitToMine(_blockChain); // will call uncommitToMine if a repeat. * completeMine(); * // unlock * @endcode */ void completeMine(); /// Undo the changes to the state for committing to mine. void uncommitToMine(); /// Retrieve all information about a given address into the cache. /// If _requireMemory is true, grab the full memory should it be a contract item. /// If _forceCreate is true, then insert a default item into the cache, in the case it doesn't /// exist in the DB. void ensureCached(Address _a, bool _requireCode, bool _forceCreate) const; /// Retrieve all information about a given address into a cache. void ensureCached(std::unordered_map& _cache, Address _a, bool _requireCode, bool _forceCreate) const; /// Execute the given block, assuming it corresponds to m_currentBlock. /// Throws on failure. u256 enact(VerifiedBlockRef const& _block, BlockChain const& _bc, ImportRequirements::value _ir = ImportRequirements::Default); /// Finalise the block, applying the earned rewards. void applyRewards(std::vector const& _uncleBlockHeaders); /// @returns gas used by transactions thus far executed. u256 gasUsed() const { return m_receipts.size() ? m_receipts.back().gasUsed() : 0; } /// Debugging only. Good for checking the Trie is in shape. bool isTrieGood(bool _enforceRefs, bool _requireNoLeftOvers) const; /// Debugging only. Good for checking the Trie is in shape. void paranoia(std::string const& _when, bool _enforceRefs = false) const; /// Provide a standard VM trace for debugging purposes. std::string vmTrace(bytesConstRef _block, BlockChain const& _bc, ImportRequirements::value _ir); OverlayDB m_db; ///< Our overlay for the state tree. SecureTrieDB m_state; ///< Our state tree, as an OverlayDB DB. Transactions m_transactions; ///< The current list of transactions that we've included in the state. TransactionReceipts m_receipts; ///< The corresponding list of transaction receipts. h256Hash m_transactionSet; ///< The set of transaction hashes that we've included in the state. OverlayDB m_lastTx; mutable std::unordered_map m_cache; ///< Our address cache. This stores the states of each address that has (or at least might have) been changed. BlockInfo m_previousBlock; ///< The previous block's information. BlockInfo m_currentBlock; ///< The current block's information. bytes m_currentBytes; ///< The current block. bool m_committedToMine = false; ///< Have we committed to mine on the present m_currentBlock? bytes m_currentTxs; ///< The RLP-encoded block of transactions. bytes m_currentUncles; ///< The RLP-encoded block of uncles. Address m_ourAddress; ///< Our address (i.e. the address to which fees go). u256 m_blockReward; static std::string c_defaultPath; friend std::ostream& operator<<(std::ostream& _out, State const& _s); }; std::ostream& operator<<(std::ostream& _out, State const& _s); template void commit(std::unordered_map const& _cache, DB& _db, SecureTrieDB& _state) { for (auto const& i: _cache) if (i.second.isDirty()) { if (!i.second.isAlive()) _state.remove(i.first); else { RLPStream s(4); s << i.second.nonce() << i.second.balance(); if (i.second.storageOverlay().empty()) { assert(i.second.baseRoot()); s.append(i.second.baseRoot()); } else { SecureTrieDB storageDB(&_db, i.second.baseRoot()); for (auto const& j: i.second.storageOverlay()) if (j.second) storageDB.insert(j.first, rlp(j.second)); else storageDB.remove(j.first); assert(storageDB.root()); s.append(storageDB.root()); } if (i.second.isFreshCode()) { h256 ch = sha3(i.second.code()); _db.insert(ch, &i.second.code()); s << ch; } else s << i.second.codeHash(); _state.insert(i.first, &s.out()); } } } } }