/*
This file is part of cpp-ethereum.
cpp-ethereum is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
cpp-ethereum is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with cpp-ethereum. If not, see .
*/
/** @file Client.cpp
* @author Gav Wood
* @date 2014
*/
#include "Client.h"
#include
#include
#include
#include
#include
#include
#include "Defaults.h"
#include "Executive.h"
#include "EthereumHost.h"
using namespace std;
using namespace dev;
using namespace dev::eth;
using namespace p2p;
VersionChecker::VersionChecker(string const& _dbPath):
m_path(_dbPath.size() ? _dbPath : Defaults::dbPath())
{
auto protocolContents = contents(m_path + "/protocol");
auto databaseContents = contents(m_path + "/database");
m_ok = RLP(protocolContents).toInt(RLP::LaisezFaire) == c_protocolVersion && RLP(databaseContents).toInt(RLP::LaisezFaire) == c_databaseVersion;
}
void VersionChecker::setOk()
{
if (!m_ok)
{
try
{
boost::filesystem::create_directory(m_path);
}
catch (...)
{
cwarn << "Unhandled exception! Failed to create directory: " << m_path << "\n" << boost::current_exception_diagnostic_information();
}
writeFile(m_path + "/protocol", rlp(c_protocolVersion));
writeFile(m_path + "/database", rlp(c_databaseVersion));
}
}
void BasicGasPricer::update(BlockChain const& _bc)
{
unsigned c = 0;
h256 p = _bc.currentHash();
m_gasPerBlock = _bc.info(p).gasLimit;
map dist;
unsigned total = 0;
while (c < 1000 && p)
{
BlockInfo bi = _bc.info(p);
if (bi.transactionsRoot != EmptyTrie)
{
auto bb = _bc.block(p);
RLP r(bb);
BlockReceipts brs(_bc.receipts(bi.hash));
for (unsigned i = 0; i < r[1].size(); ++i)
{
auto gu = brs.receipts[i].gasUsed();
dist[Transaction(r[1][i].data(), CheckSignature::None).gasPrice()] += (unsigned)brs.receipts[i].gasUsed();
total += (unsigned)gu;
}
}
p = bi.parentHash;
++c;
}
if (total > 0)
{
unsigned t = 0;
unsigned q = 1;
m_octiles[0] = dist.begin()->first;
for (auto const& i: dist)
{
for (; t <= total * q / 8 && t + i.second > total * q / 8; ++q)
m_octiles[q] = i.first;
if (q > 7)
break;
}
m_octiles[8] = dist.rbegin()->first;
}
}
Client::Client(p2p::Host* _extNet, std::string const& _dbPath, bool _forceClean, u256 _networkId, int _miners):
Worker("eth"),
m_vc(_dbPath),
m_bc(_dbPath, !m_vc.ok() || _forceClean),
m_gp(new TrivialGasPricer),
m_stateDB(State::openDB(_dbPath, !m_vc.ok() || _forceClean)),
m_preMine(Address(), m_stateDB),
m_postMine(Address(), m_stateDB)
{
m_gp->update(m_bc);
m_host = _extNet->registerCapability(new EthereumHost(m_bc, m_tq, m_bq, _networkId));
if (_miners > -1)
setMiningThreads(_miners);
else
setMiningThreads();
if (_dbPath.size())
Defaults::setDBPath(_dbPath);
m_vc.setOk();
doWork();
startWorking();
}
Client::Client(p2p::Host* _extNet, std::shared_ptr _gp, std::string const& _dbPath, bool _forceClean, u256 _networkId, int _miners):
Worker("eth"),
m_vc(_dbPath),
m_bc(_dbPath, !m_vc.ok() || _forceClean),
m_gp(_gp),
m_stateDB(State::openDB(_dbPath, !m_vc.ok() || _forceClean)),
m_preMine(Address(), m_stateDB),
m_postMine(Address(), m_stateDB)
{
m_gp->update(m_bc);
m_host = _extNet->registerCapability(new EthereumHost(m_bc, m_tq, m_bq, _networkId));
if (_miners > -1)
setMiningThreads(_miners);
else
setMiningThreads();
if (_dbPath.size())
Defaults::setDBPath(_dbPath);
m_vc.setOk();
doWork();
startWorking();
}
Client::~Client()
{
stopWorking();
}
void Client::setNetworkId(u256 _n)
{
if (auto h = m_host.lock())
h->setNetworkId(_n);
}
DownloadMan const* Client::downloadMan() const
{
if (auto h = m_host.lock())
return &(h->downloadMan());
return nullptr;
}
bool Client::isSyncing() const
{
if (auto h = m_host.lock())
return h->isSyncing();
return false;
}
void Client::doneWorking()
{
// Synchronise the state according to the head of the block chain.
// TODO: currently it contains keys for *all* blocks. Make it remove old ones.
WriteGuard l(x_stateDB);
m_preMine.sync(m_bc);
m_postMine = m_preMine;
}
void Client::flushTransactions()
{
doWork();
}
void Client::killChain()
{
bool wasMining = isMining();
if (wasMining)
stopMining();
stopWorking();
m_tq.clear();
m_bq.clear();
m_localMiners.clear();
m_preMine = State();
m_postMine = State();
{
WriteGuard l(x_stateDB);
m_stateDB = OverlayDB();
m_stateDB = State::openDB(Defaults::dbPath(), true);
}
m_bc.reopen(Defaults::dbPath(), true);
m_preMine = State(Address(), m_stateDB);
m_postMine = State(Address(), m_stateDB);
if (auto h = m_host.lock())
h->reset();
doWork();
setMiningThreads(0);
startWorking();
if (wasMining)
startMining();
}
void Client::clearPending()
{
h256Set changeds;
{
WriteGuard l(x_stateDB);
if (!m_postMine.pending().size())
return;
// for (unsigned i = 0; i < m_postMine.pending().size(); ++i)
// appendFromNewPending(m_postMine.logBloom(i), changeds);
changeds.insert(PendingChangedFilter);
m_tq.clear();
m_postMine = m_preMine;
}
{
ReadGuard l(x_localMiners);
for (auto& m: m_localMiners)
m.noteStateChange();
}
noteChanged(changeds);
}
unsigned Client::installWatch(h256 _h, Reaping _r)
{
unsigned ret;
{
Guard l(m_filterLock);
ret = m_watches.size() ? m_watches.rbegin()->first + 1 : 0;
m_watches[ret] = ClientWatch(_h, _r);
cwatch << "+++" << ret << _h.abridged();
}
auto ch = logs(ret);
if (ch.empty())
ch.push_back(InitialChange);
{
Guard l(m_filterLock);
swap(m_watches[ret].changes, ch);
}
return ret;
}
unsigned Client::installWatch(LogFilter const& _f, Reaping _r)
{
h256 h = _f.sha3();
{
Guard l(m_filterLock);
if (!m_filters.count(h))
{
cwatch << "FFF" << _f << h.abridged();
m_filters.insert(make_pair(h, _f));
}
}
return installWatch(h, _r);
}
bool Client::uninstallWatch(unsigned _i)
{
cwatch << "XXX" << _i;
Guard l(m_filterLock);
auto it = m_watches.find(_i);
if (it == m_watches.end())
return false;
auto id = it->second.id;
m_watches.erase(it);
auto fit = m_filters.find(id);
if (fit != m_filters.end())
if (!--fit->second.refCount)
{
cwatch << "*X*" << fit->first << ":" << fit->second.filter;
m_filters.erase(fit);
}
return true;
}
void Client::noteChanged(h256Set const& _filters)
{
Guard l(m_filterLock);
if (_filters.size())
cnote << "noteChanged(" << _filters << ")";
// accrue all changes left in each filter into the watches.
for (auto& i: m_watches)
if (_filters.count(i.second.id))
{
cwatch << "!!!" << i.first << i.second.id;
if (m_filters.count(i.second.id))
i.second.changes += m_filters.at(i.second.id).changes;
else
i.second.changes.push_back(LocalisedLogEntry(SpecialLogEntry, 0));
}
// clear the filters now.
for (auto& i: m_filters)
i.second.changes.clear();
}
LocalisedLogEntries Client::peekWatch(unsigned _watchId) const
{
Guard l(m_filterLock);
#if ETH_DEBUG
cdebug << "peekWatch" << _watchId;
#endif
auto& w = m_watches.at(_watchId);
#if ETH_DEBUG
cdebug << "lastPoll updated to " << chrono::duration_cast(chrono::system_clock::now().time_since_epoch()).count();
#endif
w.lastPoll = chrono::system_clock::now();
return w.changes;
}
LocalisedLogEntries Client::checkWatch(unsigned _watchId)
{
Guard l(m_filterLock);
LocalisedLogEntries ret;
#if ETH_DEBUG && 0
cdebug << "checkWatch" << _watchId;
#endif
auto& w = m_watches.at(_watchId);
#if ETH_DEBUG && 0
cdebug << "lastPoll updated to " << chrono::duration_cast(chrono::system_clock::now().time_since_epoch()).count();
#endif
std::swap(ret, w.changes);
w.lastPoll = chrono::system_clock::now();
return ret;
}
void Client::appendFromNewPending(TransactionReceipt const& _receipt, h256Set& io_changed, h256 _sha3)
{
Guard l(m_filterLock);
for (pair& i: m_filters)
if ((unsigned)i.second.filter.latest() > m_bc.number())
{
// acceptable number.
auto m = i.second.filter.matches(_receipt);
if (m.size())
{
// filter catches them
for (LogEntry const& l: m)
i.second.changes.push_back(LocalisedLogEntry(l, m_bc.number() + 1, _sha3));
io_changed.insert(i.first);
}
}
}
void Client::appendFromNewBlock(h256 const& _block, h256Set& io_changed)
{
// TODO: more precise check on whether the txs match.
auto d = m_bc.info(_block);
auto br = m_bc.receipts(_block);
Guard l(m_filterLock);
for (pair& i: m_filters)
if ((unsigned)i.second.filter.latest() >= d.number && (unsigned)i.second.filter.earliest() <= d.number && i.second.filter.matches(d.logBloom))
// acceptable number & looks like block may contain a matching log entry.
for (size_t j = 0; j < br.receipts.size(); j++)
{
auto tr = br.receipts[j];
auto m = i.second.filter.matches(tr);
if (m.size())
{
auto sha3 = transaction(d.hash, j).sha3();
// filter catches them
for (LogEntry const& l: m)
i.second.changes.push_back(LocalisedLogEntry(l, (unsigned)d.number, sha3));
io_changed.insert(i.first);
}
}
}
void Client::setForceMining(bool _enable)
{
m_forceMining = _enable;
ReadGuard l(x_localMiners);
for (auto& m: m_localMiners)
m.noteStateChange();
}
void Client::setMiningThreads(unsigned _threads)
{
stopMining();
#if ETH_ETHASHCL
unsigned t = 1;
#else
auto t = _threads ? _threads : thread::hardware_concurrency();
#endif
WriteGuard l(x_localMiners);
m_localMiners.clear();
m_localMiners.resize(t);
unsigned i = 0;
for (auto& m: m_localMiners)
m.setup(this, i++);
}
MineProgress Client::miningProgress() const
{
MineProgress ret;
ReadGuard l(x_localMiners);
for (auto& m: m_localMiners)
ret.combine(m.miningProgress());
return ret;
}
std::list Client::miningHistory()
{
std::list ret;
ReadGuard l(x_localMiners);
if (m_localMiners.empty())
return ret;
ret = m_localMiners[0].miningHistory();
for (unsigned i = 1; i < m_localMiners.size(); ++i)
{
auto l = m_localMiners[i].miningHistory();
auto ri = ret.begin();
auto li = l.begin();
for (; ri != ret.end() && li != l.end(); ++ri, ++li)
ri->combine(*li);
}
return ret;
}
void Client::setupState(State& _s)
{
{
ReadGuard l(x_stateDB);
cwork << "SETUP MINE";
_s = m_postMine;
}
if (m_paranoia)
{
if (_s.amIJustParanoid(m_bc))
{
cnote << "I'm just paranoid. Block is fine.";
_s.commitToMine(m_bc);
}
else
{
cwarn << "I'm not just paranoid. Cannot mine. Please file a bug report.";
}
}
else
_s.commitToMine(m_bc);
}
void Client::transact(Secret _secret, u256 _value, Address _dest, bytes const& _data, u256 _gas, u256 _gasPrice)
{
startWorking();
u256 n;
{
ReadGuard l(x_stateDB);
n = m_postMine.transactionsFrom(toAddress(_secret));
}
Transaction t(_value, _gasPrice, _gas, _dest, _data, n, _secret);
// cdebug << "Nonce at " << toAddress(_secret) << " pre:" << m_preMine.transactionsFrom(toAddress(_secret)) << " post:" << m_postMine.transactionsFrom(toAddress(_secret));
StructuredLogger::transactionReceived(t.sha3().abridged(), t.sender().abridged());
cnote << "New transaction " << t;
m_tq.attemptImport(t.rlp());
}
bytes Client::call(Secret _secret, u256 _value, Address _dest, bytes const& _data, u256 _gas, u256 _gasPrice, int _blockNumber)
{
bytes out;
try
{
u256 n;
State temp;
// cdebug << "Nonce at " << toAddress(_secret) << " pre:" << m_preMine.transactionsFrom(toAddress(_secret)) << " post:" << m_postMine.transactionsFrom(toAddress(_secret));
{
ReadGuard l(x_stateDB);
temp = asOf(_blockNumber);
n = temp.transactionsFrom(toAddress(_secret));
}
Transaction t(_value, _gasPrice, _gas, _dest, _data, n, _secret);
u256 gasUsed = temp.execute(m_bc, t.rlp(), &out, false);
(void)gasUsed; // TODO: do something with gasused which it returns.
}
catch (...)
{
// TODO: Some sort of notification of failure.
}
return out;
}
bytes Client::call(Address _dest, bytes const& _data, u256 _gas, u256 _value, u256 _gasPrice)
{
try
{
State temp;
// cdebug << "Nonce at " << toAddress(_secret) << " pre:" << m_preMine.transactionsFrom(toAddress(_secret)) << " post:" << m_postMine.transactionsFrom(toAddress(_secret));
{
ReadGuard l(x_stateDB);
temp = m_postMine;
}
Executive e(temp, LastHashes(), 0);
if (!e.call(_dest, _dest, Address(), _value, _gasPrice, &_data, _gas, Address()))
{
e.go();
return e.out().toBytes();
}
}
catch (...)
{
// TODO: Some sort of notification of failure.
}
return bytes();
}
Address Client::transact(Secret _secret, u256 _endowment, bytes const& _init, u256 _gas, u256 _gasPrice)
{
startWorking();
u256 n;
{
ReadGuard l(x_stateDB);
n = m_postMine.transactionsFrom(toAddress(_secret));
}
Transaction t(_endowment, _gasPrice, _gas, _init, n, _secret);
cnote << "New transaction " << t;
m_tq.attemptImport(t.rlp());
return right160(sha3(rlpList(t.sender(), t.nonce())));
}
void Client::inject(bytesConstRef _rlp)
{
startWorking();
m_tq.attemptImport(_rlp);
}
pair Client::getWork()
{
Guard l(x_remoteMiner);
{
ReadGuard l(x_stateDB);
m_remoteMiner.update(m_postMine, m_bc);
}
return make_pair(m_remoteMiner.workHash(), m_remoteMiner.difficulty());
}
bool Client::submitWork(ProofOfWork::Proof const& _proof)
{
Guard l(x_remoteMiner);
return m_remoteMiner.submitWork(_proof);
}
void Client::doWork()
{
// TODO: Use condition variable rather than polling.
cworkin << "WORK";
h256Set changeds;
auto maintainMiner = [&](Miner& m)
{
if (m.isComplete())
{
// TODO: enable a short-circuit option since we mined it. will need to get the end state from the miner.
auto lm = dynamic_cast(&m);
h256s hs;
if (false && lm && !m_verifyOwnBlocks)
{
// TODO: implement
//m_bc.attemptImport(m_blockData(), m_stateDB, lm->state());
// TODO: derive hs from lm->state()
}
else
{
cwork << "CHAIN <== postSTATE";
WriteGuard l(x_stateDB);
hs = m_bc.attemptImport(m.blockData(), m_stateDB);
}
if (hs.size())
{
for (auto const& h: hs)
appendFromNewBlock(h, changeds);
changeds.insert(ChainChangedFilter);
}
for (auto& m: m_localMiners)
m.noteStateChange();
}
};
{
ReadGuard l(x_localMiners);
for (auto& m: m_localMiners)
maintainMiner(m);
}
{
Guard l(x_remoteMiner);
maintainMiner(m_remoteMiner);
}
// Synchronise state to block chain.
// This should remove any transactions on our queue that are included within our state.
// It also guarantees that the state reflects the longest (valid!) chain on the block chain.
// This might mean reverting to an earlier state and replaying some blocks, or, (worst-case:
// if there are no checkpoints before our fork) reverting to the genesis block and replaying
// all blocks.
// Resynchronise state with block chain & trans
bool resyncStateNeeded = false;
{
WriteGuard l(x_stateDB);
cwork << "BQ ==> CHAIN ==> STATE";
OverlayDB db = m_stateDB;
x_stateDB.unlock();
h256s newBlocks = m_bc.sync(m_bq, db, 100); // TODO: remove transactions from m_tq nicely rather than relying on out of date nonce later on.
if (newBlocks.size())
{
for (auto i: newBlocks)
appendFromNewBlock(i, changeds);
changeds.insert(ChainChangedFilter);
}
x_stateDB.lock();
if (newBlocks.size())
m_stateDB = db;
cwork << "preSTATE <== CHAIN";
if (m_preMine.sync(m_bc) || m_postMine.address() != m_preMine.address())
{
if (isMining())
cnote << "New block on chain: Restarting mining operation.";
m_postMine = m_preMine;
resyncStateNeeded = true;
changeds.insert(PendingChangedFilter);
// TODO: Move transactions pending from m_postMine back to transaction queue.
}
// returns h256s as blooms, once for each transaction.
cwork << "postSTATE <== TQ";
TransactionReceipts newPendingReceipts = m_postMine.sync(m_bc, m_tq, *m_gp);
if (newPendingReceipts.size())
{
for (size_t i = 0; i < newPendingReceipts.size(); i++)
appendFromNewPending(newPendingReceipts[i], changeds, m_postMine.pending()[i].sha3());
changeds.insert(PendingChangedFilter);
if (isMining())
cnote << "Additional transaction ready: Restarting mining operation.";
resyncStateNeeded = true;
}
}
if (resyncStateNeeded)
{
ReadGuard l(x_localMiners);
for (auto& m: m_localMiners)
m.noteStateChange();
}
cwork << "noteChanged" << changeds.size() << "items";
noteChanged(changeds);
cworkout << "WORK";
this_thread::sleep_for(chrono::milliseconds(100));
if (chrono::system_clock::now() - m_lastGarbageCollection > chrono::seconds(5))
{
// watches garbage collection
vector toUninstall;
{
Guard l(m_filterLock);
for (auto key: keysOf(m_watches))
if (m_watches[key].lastPoll != chrono::system_clock::time_point::max() && chrono::system_clock::now() - m_watches[key].lastPoll > chrono::seconds(20))
{
toUninstall.push_back(key);
cnote << "GC: Uninstall" << key << "(" << chrono::duration_cast(chrono::system_clock::now() - m_watches[key].lastPoll).count() << "s old)";
}
}
for (auto i: toUninstall)
uninstallWatch(i);
// blockchain GC
m_bc.garbageCollect();
m_lastGarbageCollection = chrono::system_clock::now();
}
}
unsigned Client::numberOf(int _n) const
{
if (_n > 0)
return _n;
else if (_n == GenesisBlock)
return 0;
else
return m_bc.details().number + max(-(int)m_bc.details().number, 1 + _n);
}
State Client::asOf(int _h) const
{
ReadGuard l(x_stateDB);
if (_h == 0)
return m_postMine;
else if (_h == -1)
return m_preMine;
else
return State(m_stateDB, m_bc, m_bc.numberHash(numberOf(_h)));
}
State Client::state(unsigned _txi, h256 _block) const
{
ReadGuard l(x_stateDB);
return State(m_stateDB, m_bc, _block).fromPending(_txi);
}
eth::State Client::state(h256 _block) const
{
ReadGuard l(x_stateDB);
return State(m_stateDB, m_bc, _block);
}
eth::State Client::state(unsigned _txi) const
{
ReadGuard l(x_stateDB);
return m_postMine.fromPending(_txi);
}
StateDiff Client::diff(unsigned _txi, int _block) const
{
State st = asOf(_block);
return st.fromPending(_txi).diff(st.fromPending(_txi + 1));
}
StateDiff Client::diff(unsigned _txi, h256 _block) const
{
State st = state(_block);
return st.fromPending(_txi).diff(st.fromPending(_txi + 1));
}
std::vector Client::addresses(int _block) const
{
vector ret;
for (auto const& i: asOf(_block).addresses())
ret.push_back(i.first);
return ret;
}
u256 Client::balanceAt(Address _a, int _block) const
{
return asOf(_block).balance(_a);
}
std::map Client::storageAt(Address _a, int _block) const
{
return asOf(_block).storage(_a);
}
u256 Client::countAt(Address _a, int _block) const
{
return asOf(_block).transactionsFrom(_a);
}
u256 Client::stateAt(Address _a, u256 _l, int _block) const
{
return asOf(_block).storage(_a, _l);
}
bytes Client::codeAt(Address _a, int _block) const
{
return asOf(_block).code(_a);
}
Transaction Client::transaction(h256 _transactionHash) const
{
return Transaction(m_bc.transaction(_transactionHash), CheckSignature::Range);
}
Transaction Client::transaction(h256 _blockHash, unsigned _i) const
{
auto bl = m_bc.block(_blockHash);
RLP b(bl);
if (_i < b[1].itemCount())
return Transaction(b[1][_i].data(), CheckSignature::Range);
else
return Transaction();
}
BlockInfo Client::uncle(h256 _blockHash, unsigned _i) const
{
auto bl = m_bc.block(_blockHash);
RLP b(bl);
if (_i < b[2].itemCount())
return BlockInfo::fromHeader(b[2][_i].data());
else
return BlockInfo();
}
unsigned Client::transactionCount(h256 _blockHash) const
{
auto bl = m_bc.block(_blockHash);
RLP b(bl);
return b[1].itemCount();
}
unsigned Client::uncleCount(h256 _blockHash) const
{
auto bl = m_bc.block(_blockHash);
RLP b(bl);
return b[2].itemCount();
}
Transactions Client::transactions(h256 _blockHash) const
{
auto bl = m_bc.block(_blockHash);
RLP b(bl);
Transactions res;
for (unsigned i = 0; i < b[1].itemCount(); i++)
res.emplace_back(b[1][i].data(), CheckSignature::Range);
return res;
}
TransactionHashes Client::transactionHashes(h256 _blockHash) const
{
return m_bc.transactionHashes(_blockHash);
}
LocalisedLogEntries Client::logs(unsigned _watchId) const
{
LogFilter f;
try
{
Guard l(m_filterLock);
f = m_filters.at(m_watches.at(_watchId).id).filter;
}
catch (...)
{
return LocalisedLogEntries();
}
return logs(f);
}
LocalisedLogEntries Client::logs(LogFilter const& _f) const
{
LocalisedLogEntries ret;
unsigned begin = min(m_bc.number() + 1, (unsigned)_f.latest());
unsigned end = min(m_bc.number(), min(begin, (unsigned)_f.earliest()));
// Handle pending transactions differently as they're not on the block chain.
if (begin > m_bc.number())
{
ReadGuard l(x_stateDB);
for (unsigned i = 0; i < m_postMine.pending().size(); ++i)
{
// Might have a transaction that contains a matching log.
TransactionReceipt const& tr = m_postMine.receipt(i);
auto sha3 = m_postMine.pending()[i].sha3();
LogEntries le = _f.matches(tr);
if (le.size())
for (unsigned j = 0; j < le.size(); ++j)
ret.insert(ret.begin(), LocalisedLogEntry(le[j], begin, sha3));
}
begin = m_bc.number();
}
set matchingBlocks;
for (auto const& i: _f.bloomPossibilities())
for (auto u: m_bc.withBlockBloom(i, end, begin))
matchingBlocks.insert(u);
#if ETH_DEBUG
unsigned falsePos = 0;
#endif
for (auto n: matchingBlocks)
{
#if ETH_DEBUG
int total = 0;
#endif
auto h = m_bc.numberHash(n);
auto receipts = m_bc.receipts(h).receipts;
for (size_t i = 0; i < receipts.size(); i++)
{
TransactionReceipt receipt = receipts[i];
if (_f.matches(receipt.bloom()))
{
auto info = m_bc.info(h);
auto h = transaction(info.hash, i).sha3();
LogEntries le = _f.matches(receipt);
if (le.size())
{
#if ETH_DEBUG
total += le.size();
#endif
for (unsigned j = 0; j < le.size(); ++j)
ret.insert(ret.begin(), LocalisedLogEntry(le[j], n, h));
}
}
#if ETH_DEBUG
if (!total)
falsePos++;
#endif
}
}
#if ETH_DEBUG
cdebug << matchingBlocks.size() << "searched from" << (end - begin) << "skipped; " << falsePos << "false +ves";
#endif
return ret;
}