/* This file is part of cpp-ethereum. cpp-ethereum is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. cpp-ethereum is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with cpp-ethereum. If not, see . */ /** @file EC.cpp * @author Alex Leverington * @date 2014 * * ECDSA, ECIES */ #include #include "CryptoPP.h" #include "SHA3.h" #include "SHA3MAC.h" #include "EC.h" static_assert(dev::Secret::size == 32, "Secret key must be 32 bytes."); static_assert(dev::Public::size == 64, "Public key must be 64 bytes."); static_assert(dev::Signature::size == 65, "Signature must be 65 bytes."); using namespace std; using namespace dev; using namespace dev::crypto; using namespace CryptoPP; using namespace pp; void crypto::toPublic(Secret const& _s, Public& o_public) { exponentToPublic(Integer(_s.data(), sizeof(_s)), o_public); } h256 crypto::kdf(Secret const& _priv, h256 const& _hash) { // H(H(r||k)^h) h256 s; sha3mac(Nonce::get().ref(), _priv.ref(), s.ref()); s ^= _hash; sha3(s.ref(), s.ref()); if (!s || !_hash || !_priv) BOOST_THROW_EXCEPTION(InvalidState()); return std::move(s); } void crypto::encrypt(Public const& _k, bytes& io_cipher) { ECIES::Encryptor e; initializeDLScheme(_k, e); size_t plen = io_cipher.size(); bytes c; c.resize(e.CiphertextLength(plen)); // todo: use StringSource with io_cipher as input and output. e.Encrypt(PRNG, io_cipher.data(), plen, c.data()); memset(io_cipher.data(), 0, io_cipher.size()); io_cipher = std::move(c); } void crypto::decrypt(Secret const& _k, bytes& io_text) { CryptoPP::ECIES::Decryptor d; initializeDLScheme(_k, d); size_t clen = io_text.size(); bytes p; p.resize(d.MaxPlaintextLength(io_text.size())); // todo: use StringSource with io_text as input and output. DecodingResult r = d.Decrypt(PRNG, io_text.data(), clen, p.data()); if (!r.isValidCoding) { io_text.clear(); return; } io_text.resize(r.messageLength); io_text = std::move(p); } Signature crypto::sign(Secret const& _k, bytesConstRef _message) { return crypto::sign(_k, sha3(_message)); } Signature crypto::sign(Secret const& _key, h256 const& _hash) { ECDSA::Signer signer; initializeDLScheme(_key, signer); Integer const& q = secp256k1Params.GetGroupOrder(); Integer const& qs = secp256k1Params.GetSubgroupOrder(); Integer e(_hash.asBytes().data(), 32); Integer k(kdf(_key, _hash).data(), 32); if (k == 0) BOOST_THROW_EXCEPTION(InvalidState()); k = 1 + (k % (qs - 1)); ECP::Point rp = secp256k1Params.ExponentiateBase(k); Integer r = secp256k1Params.ConvertElementToInteger(rp); int recid = ((r >= q) ? 2 : 0) | (rp.y.IsOdd() ? 1 : 0); Integer kInv = k.InverseMod(q); Integer s = (kInv * (Integer(_key.asBytes().data(), 32)*r + e)) % q; assert(!!r && !!s); if (s > qs) { s = q - s; if (recid) recid ^= 1; } Signature sig; r.Encode(sig.data(), 32); s.Encode(sig.data() + 32, 32); sig[64] = recid; return sig; } bool crypto::verify(Signature const& _signature, bytesConstRef _message) { return crypto::verify(crypto::recover(_signature, _message), _signature, _message); } bool crypto::verify(Public const& _p, Signature const& _sig, bytesConstRef _message, bool _hashed) { static const size_t derMaxEncodingLength = 72; if (_hashed) { assert(_message.size() == 32); byte encpub[65] = {0x04}; memcpy(&encpub[1], _p.data(), 64); byte dersig[derMaxEncodingLength]; size_t cssz = DSAConvertSignatureFormat(dersig, derMaxEncodingLength, DSA_DER, _sig.data(), 64, DSA_P1363); assert(cssz <= derMaxEncodingLength); return (1 == secp256k1_ecdsa_verify(_message.data(), _message.size(), dersig, cssz, encpub, 65)); } ECDSA::Verifier verifier; initializeDLScheme(_p, verifier); return verifier.VerifyMessage(_message.data(), _message.size(), _sig.data(), sizeof(Signature) - 1); } Public crypto::recover(Signature _signature, bytesConstRef _message) { secp256k1_start(); static const int c_pubkeylen = 65; auto pubkeylen = c_pubkeylen; byte pubkey[c_pubkeylen]; if (!secp256k1_ecdsa_recover_compact(_message.data(), 32, _signature.data(), pubkey, &pubkeylen, 0, (int)_signature[64])) return Public(); #if ETH_CRYPTO_TRACE h256* sig = (h256 const*)_signature.data(); cout << "---- RECOVER -------------------------------" << endl; cout << "MSG: " << _message << endl; cout << "R S V: " << sig[0] << " " << sig[1] << " " << (int)(_signature[64] - 27) << "+27" << endl; cout << "PUB: " << toHex(bytesConstRef(&(pubkey[1]), 64)) << endl; #endif Public ret; memcpy(&ret, &(pubkey[1]), sizeof(Public)); return ret; } bool crypto::verifySecret(Secret const& _s, Public const& _p) { secp256k1_start(); int ok = secp256k1_ecdsa_seckey_verify(_s.data()); if (!ok) return false; static const int c_pubkeylen = 65; auto pubkeylen = c_pubkeylen; byte pubkey[c_pubkeylen]; ok = secp256k1_ecdsa_pubkey_create(pubkey, &pubkeylen, _s.data(), 0); if (!ok || pubkeylen != 65) return false; ok = secp256k1_ecdsa_pubkey_verify(pubkey, 65); if (!ok) return false; for (int i = 0; i < 32; i++) if (pubkey[i+1]!=_p[i]) return false; return true; }