/* This file is part of cpp-ethereum. cpp-ethereum is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. cpp-ethereum is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with cpp-ethereum. If not, see . */ /** * @author Christian * @date 2014 * Solidity compiler. */ #include #include #include #include using namespace std; namespace dev { namespace solidity { bytes Compiler::compile(ContractDefinition& _contract) { Compiler compiler; compiler.compileContract(_contract); return compiler.m_context.getAssembledBytecode(); } void Compiler::compileContract(ContractDefinition& _contract) { m_context = CompilerContext(); // clear it just in case //@todo constructor //@todo register state variables for (ASTPointer const& function: _contract.getDefinedFunctions()) m_context.addFunction(*function); appendFunctionSelector(_contract.getDefinedFunctions()); for (ASTPointer const& function: _contract.getDefinedFunctions()) function->accept(*this); packIntoContractCreator(); } void Compiler::packIntoContractCreator() { CompilerContext creatorContext; eth::AssemblyItem sub = creatorContext.addSubroutine(m_context.getAssembly()); // stack contains sub size creatorContext << eth::Instruction::DUP1 << sub << u256(0) << eth::Instruction::CODECOPY; creatorContext << u256(0) << eth::Instruction::RETURN; swap(m_context, creatorContext); } void Compiler::appendFunctionSelector(vector> const& _functions) { // sort all public functions and store them together with a tag for their argument decoding section map> publicFunctions; for (ASTPointer const& f: _functions) if (f->isPublic()) publicFunctions.insert(make_pair(f->getName(), make_pair(f.get(), m_context.newTag()))); //@todo remove constructor if (publicFunctions.size() > 255) BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("More than 255 public functions for contract.")); //@todo check for calldatasize? // retrieve the first byte of the call data m_context << u256(0) << eth::Instruction::CALLDATALOAD << u256(0) << eth::Instruction::BYTE; // check that it is not too large m_context << eth::Instruction::DUP1 << u256(publicFunctions.size() - 1) << eth::Instruction::LT; eth::AssemblyItem returnTag = m_context.appendConditionalJump(); // otherwise, jump inside jump table (each entry of the table has size 4) m_context << u256(4) << eth::Instruction::MUL; eth::AssemblyItem jumpTableStart = m_context.pushNewTag(); m_context << eth::Instruction::ADD << eth::Instruction::JUMP; // jump table @todo it could be that the optimizer destroys this m_context << jumpTableStart; for (pair> const& f: publicFunctions) m_context.appendJumpTo(f.second.second) << eth::Instruction::JUMPDEST; m_context << returnTag << eth::Instruction::STOP; for (pair> const& f: publicFunctions) { FunctionDefinition const& function = *f.second.first; m_context << f.second.second; eth::AssemblyItem returnTag = m_context.pushNewTag(); appendCalldataUnpacker(function); m_context.appendJumpTo(m_context.getFunctionEntryLabel(function)); m_context << returnTag; appendReturnValuePacker(function); } } void Compiler::appendCalldataUnpacker(FunctionDefinition const& _function) { // We do not check the calldata size, everything is zero-padded. unsigned dataOffset = 1; //@todo this can be done more efficiently, saving some CALLDATALOAD calls for (ASTPointer const& var: _function.getParameters()) { unsigned const numBytes = var->getType()->getCalldataEncodedSize(); if (numBytes == 0) BOOST_THROW_EXCEPTION(CompilerError() << errinfo_sourceLocation(var->getLocation()) << errinfo_comment("Type not yet supported.")); if (numBytes == 32) m_context << u256(dataOffset) << eth::Instruction::CALLDATALOAD; else m_context << (u256(1) << ((32 - numBytes) * 8)) << u256(dataOffset) << eth::Instruction::CALLDATALOAD << eth::Instruction::DIV; dataOffset += numBytes; } } void Compiler::appendReturnValuePacker(FunctionDefinition const& _function) { //@todo this can be also done more efficiently unsigned dataOffset = 0; vector> const& parameters = _function.getReturnParameters(); for (unsigned i = 0; i < parameters.size(); ++i) { unsigned numBytes = parameters[i]->getType()->getCalldataEncodedSize(); if (numBytes == 0) BOOST_THROW_EXCEPTION(CompilerError() << errinfo_sourceLocation(parameters[i]->getLocation()) << errinfo_comment("Type not yet supported.")); m_context << eth::dupInstruction(parameters.size() - i); if (numBytes != 32) m_context << (u256(1) << ((32 - numBytes) * 8)) << eth::Instruction::MUL; m_context << u256(dataOffset) << eth::Instruction::MSTORE; dataOffset += numBytes; } // note that the stack is not cleaned up here m_context << u256(dataOffset) << u256(0) << eth::Instruction::RETURN; } bool Compiler::visit(FunctionDefinition& _function) { //@todo to simplify this, the calling convention could by changed such that // caller puts: [retarg0] ... [retargm] [return address] [arg0] ... [argn] // although note that this reduces the size of the visible stack m_context.startNewFunction(); m_returnTag = m_context.newTag(); m_breakTags.clear(); m_continueTags.clear(); m_context << m_context.getFunctionEntryLabel(_function); // stack upon entry: [return address] [arg0] [arg1] ... [argn] // reserve additional slots: [retarg0] ... [retargm] [localvar0] ... [localvarp] unsigned const numArguments = _function.getParameters().size(); unsigned const numReturnValues = _function.getReturnParameters().size(); unsigned const numLocalVariables = _function.getLocalVariables().size(); for (ASTPointer const& variable: _function.getParameters() + _function.getReturnParameters()) m_context.addVariable(*variable); for (VariableDeclaration const* localVariable: _function.getLocalVariables()) m_context.addVariable(*localVariable); m_context.initializeLocalVariables(numReturnValues + numLocalVariables); _function.getBody().accept(*this); m_context << m_returnTag; // Now we need to re-shuffle the stack. For this we keep a record of the stack layout // that shows the target positions of the elements, where "-1" denotes that this element needs // to be removed from the stack. // Note that the fact that the return arguments are of increasing index is vital for this // algorithm to work. vector stackLayout; stackLayout.push_back(numReturnValues); // target of return address stackLayout += vector(numArguments, -1); // discard all arguments for (unsigned i = 0; i < numReturnValues; ++i) stackLayout.push_back(i); stackLayout += vector(numLocalVariables, -1); while (stackLayout.back() != int(stackLayout.size() - 1)) if (stackLayout.back() < 0) { m_context << eth::Instruction::POP; stackLayout.pop_back(); } else { m_context << eth::swapInstruction(stackLayout.size() - stackLayout.back() - 1); swap(stackLayout[stackLayout.back()], stackLayout.back()); } //@todo assert that everything is in place now m_context << eth::Instruction::JUMP; return false; } bool Compiler::visit(IfStatement& _ifStatement) { ExpressionCompiler::compileExpression(m_context, _ifStatement.getCondition()); eth::AssemblyItem trueTag = m_context.appendConditionalJump(); if (_ifStatement.getFalseStatement()) _ifStatement.getFalseStatement()->accept(*this); eth::AssemblyItem endTag = m_context.appendJump(); m_context << trueTag; _ifStatement.getTrueStatement().accept(*this); m_context << endTag; return false; } bool Compiler::visit(WhileStatement& _whileStatement) { eth::AssemblyItem loopStart = m_context.newTag(); eth::AssemblyItem loopEnd = m_context.newTag(); m_continueTags.push_back(loopStart); m_breakTags.push_back(loopEnd); m_context << loopStart; ExpressionCompiler::compileExpression(m_context, _whileStatement.getCondition()); m_context << eth::Instruction::ISZERO; m_context.appendConditionalJumpTo(loopEnd); _whileStatement.getBody().accept(*this); m_context.appendJumpTo(loopStart); m_context << loopEnd; m_continueTags.pop_back(); m_breakTags.pop_back(); return false; } bool Compiler::visit(Continue&) { if (!m_continueTags.empty()) m_context.appendJumpTo(m_continueTags.back()); return false; } bool Compiler::visit(Break&) { if (!m_breakTags.empty()) m_context.appendJumpTo(m_breakTags.back()); return false; } bool Compiler::visit(Return& _return) { //@todo modifications are needed to make this work with functions returning multiple values if (Expression* expression = _return.getExpression()) { ExpressionCompiler::compileExpression(m_context, *expression); VariableDeclaration const& firstVariable = *_return.getFunctionReturnParameters().getParameters().front(); ExpressionCompiler::cleanHigherOrderBitsIfNeeded(*expression->getType(), *firstVariable.getType()); int stackPosition = m_context.getStackPositionOfVariable(firstVariable); m_context << eth::swapInstruction(stackPosition) << eth::Instruction::POP; } m_context.appendJumpTo(m_returnTag); return false; } bool Compiler::visit(VariableDefinition& _variableDefinition) { if (Expression* expression = _variableDefinition.getExpression()) { ExpressionCompiler::compileExpression(m_context, *expression); ExpressionCompiler::cleanHigherOrderBitsIfNeeded(*expression->getType(), *_variableDefinition.getDeclaration().getType()); int stackPosition = m_context.getStackPositionOfVariable(_variableDefinition.getDeclaration()); m_context << eth::swapInstruction(stackPosition) << eth::Instruction::POP; } return false; } bool Compiler::visit(ExpressionStatement& _expressionStatement) { Expression& expression = _expressionStatement.getExpression(); ExpressionCompiler::compileExpression(m_context, expression); if (expression.getType()->getCategory() != Type::Category::VOID) m_context << eth::Instruction::POP; return false; } } }