/* This file is part of ethash. ethash is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. ethash is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with cpp-ethereum. If not, see . */ /** @file internal.c * @author Tim Hughes * @author Matthew Wampler-Doty * @date 2015 */ #include #include #include #include #include #include "mmap.h" #include "ethash.h" #include "fnv.h" #include "endian.h" #include "internal.h" #include "data_sizes.h" #include "io.h" #ifdef WITH_CRYPTOPP #include "sha3_cryptopp.h" #else #include "sha3.h" #endif // WITH_CRYPTOPP uint64_t ethash_get_datasize(uint64_t const block_number) { assert(block_number / ETHASH_EPOCH_LENGTH < 2048); return dag_sizes[block_number / ETHASH_EPOCH_LENGTH]; } uint64_t ethash_get_cachesize(uint64_t const block_number) { assert(block_number / ETHASH_EPOCH_LENGTH < 2048); return cache_sizes[block_number / ETHASH_EPOCH_LENGTH]; } // Follows Sergio's "STRICT MEMORY HARD HASHING FUNCTIONS" (2014) // https://bitslog.files.wordpress.com/2013/12/memohash-v0-3.pdf // SeqMemoHash(s, R, N) bool static ethash_compute_cache_nodes( node* const nodes, uint64_t cache_size, ethash_h256_t const* seed ) { if (cache_size % sizeof(node) != 0) { return false; } uint32_t const num_nodes = (uint32_t) (cache_size / sizeof(node)); SHA3_512(nodes[0].bytes, (uint8_t*)seed, 32); for (uint32_t i = 1; i != num_nodes; ++i) { SHA3_512(nodes[i].bytes, nodes[i - 1].bytes, 64); } for (uint32_t j = 0; j != ETHASH_CACHE_ROUNDS; j++) { for (uint32_t i = 0; i != num_nodes; i++) { uint32_t const idx = nodes[i].words[0] % num_nodes; node data; data = nodes[(num_nodes - 1 + i) % num_nodes]; for (uint32_t w = 0; w != NODE_WORDS; ++w) { data.words[w] ^= nodes[idx].words[w]; } SHA3_512(nodes[i].bytes, data.bytes, sizeof(data)); } } // now perform endian conversion fix_endian_arr32(nodes->words, num_nodes * NODE_WORDS); return true; } void ethash_calculate_dag_item( node* const ret, uint32_t node_index, ethash_light_t const light ) { uint32_t num_parent_nodes = (uint32_t) (light->cache_size / sizeof(node)); node const* cache_nodes = (node const *) light->cache; node const* init = &cache_nodes[node_index % num_parent_nodes]; memcpy(ret, init, sizeof(node)); ret->words[0] ^= node_index; SHA3_512(ret->bytes, ret->bytes, sizeof(node)); #if defined(_M_X64) && ENABLE_SSE __m128i const fnv_prime = _mm_set1_epi32(FNV_PRIME); __m128i xmm0 = ret->xmm[0]; __m128i xmm1 = ret->xmm[1]; __m128i xmm2 = ret->xmm[2]; __m128i xmm3 = ret->xmm[3]; #endif for (uint32_t i = 0; i != ETHASH_DATASET_PARENTS; ++i) { uint32_t parent_index = fnv_hash(node_index ^ i, ret->words[i % NODE_WORDS]) % num_parent_nodes; node const *parent = &cache_nodes[parent_index]; #if defined(_M_X64) && ENABLE_SSE { xmm0 = _mm_mullo_epi32(xmm0, fnv_prime); xmm1 = _mm_mullo_epi32(xmm1, fnv_prime); xmm2 = _mm_mullo_epi32(xmm2, fnv_prime); xmm3 = _mm_mullo_epi32(xmm3, fnv_prime); xmm0 = _mm_xor_si128(xmm0, parent->xmm[0]); xmm1 = _mm_xor_si128(xmm1, parent->xmm[1]); xmm2 = _mm_xor_si128(xmm2, parent->xmm[2]); xmm3 = _mm_xor_si128(xmm3, parent->xmm[3]); // have to write to ret as values are used to compute index ret->xmm[0] = xmm0; ret->xmm[1] = xmm1; ret->xmm[2] = xmm2; ret->xmm[3] = xmm3; } #else { for (unsigned w = 0; w != NODE_WORDS; ++w) { ret->words[w] = fnv_hash(ret->words[w], parent->words[w]); } } #endif } SHA3_512(ret->bytes, ret->bytes, sizeof(node)); } bool ethash_compute_full_data( void* mem, uint64_t full_size, ethash_light_t const light, ethash_callback_t callback ) { if (full_size % (sizeof(uint32_t) * MIX_WORDS) != 0 || (full_size % sizeof(node)) != 0) { return false; } uint32_t const max_n = (uint32_t)(full_size / sizeof(node)); node* full_nodes = mem; double const progress_change = 1.0f / max_n; double progress = 0.0f; // now compute full nodes for (uint32_t n = 0; n != max_n; ++n) { if (callback && n % (max_n / 100) == 0 && callback((unsigned int)(ceil(progress * 100.0f))) != 0) { return false; } progress += progress_change; ethash_calculate_dag_item(&(full_nodes[n]), n, light); } return true; } static bool ethash_hash( ethash_return_value_t* ret, node const* full_nodes, ethash_light_t const light, uint64_t full_size, ethash_h256_t const header_hash, uint64_t const nonce ) { if (full_size % MIX_WORDS != 0) { return false; } // pack hash and nonce together into first 40 bytes of s_mix assert(sizeof(node) * 8 == 512); node s_mix[MIX_NODES + 1]; memcpy(s_mix[0].bytes, &header_hash, 32); fix_endian64(s_mix[0].double_words[4], nonce); // compute sha3-512 hash and replicate across mix SHA3_512(s_mix->bytes, s_mix->bytes, 40); fix_endian_arr32(s_mix[0].words, 16); node* const mix = s_mix + 1; for (uint32_t w = 0; w != MIX_WORDS; ++w) { mix->words[w] = s_mix[0].words[w % NODE_WORDS]; } unsigned const page_size = sizeof(uint32_t) * MIX_WORDS; unsigned const num_full_pages = (unsigned) (full_size / page_size); for (unsigned i = 0; i != ETHASH_ACCESSES; ++i) { uint32_t const index = fnv_hash(s_mix->words[0] ^ i, mix->words[i % MIX_WORDS]) % num_full_pages; for (unsigned n = 0; n != MIX_NODES; ++n) { node const* dag_node; if (full_nodes) { dag_node = &full_nodes[MIX_NODES * index + n]; } else { node tmp_node; ethash_calculate_dag_item(&tmp_node, index * MIX_NODES + n, light); dag_node = &tmp_node; } #if defined(_M_X64) && ENABLE_SSE { __m128i fnv_prime = _mm_set1_epi32(FNV_PRIME); __m128i xmm0 = _mm_mullo_epi32(fnv_prime, mix[n].xmm[0]); __m128i xmm1 = _mm_mullo_epi32(fnv_prime, mix[n].xmm[1]); __m128i xmm2 = _mm_mullo_epi32(fnv_prime, mix[n].xmm[2]); __m128i xmm3 = _mm_mullo_epi32(fnv_prime, mix[n].xmm[3]); mix[n].xmm[0] = _mm_xor_si128(xmm0, dag_node->xmm[0]); mix[n].xmm[1] = _mm_xor_si128(xmm1, dag_node->xmm[1]); mix[n].xmm[2] = _mm_xor_si128(xmm2, dag_node->xmm[2]); mix[n].xmm[3] = _mm_xor_si128(xmm3, dag_node->xmm[3]); } #else { for (unsigned w = 0; w != NODE_WORDS; ++w) { mix[n].words[w] = fnv_hash(mix[n].words[w], dag_node->words[w]); } } #endif } } // compress mix for (uint32_t w = 0; w != MIX_WORDS; w += 4) { uint32_t reduction = mix->words[w + 0]; reduction = reduction * FNV_PRIME ^ mix->words[w + 1]; reduction = reduction * FNV_PRIME ^ mix->words[w + 2]; reduction = reduction * FNV_PRIME ^ mix->words[w + 3]; mix->words[w / 4] = reduction; } fix_endian_arr32(mix->words, MIX_WORDS / 4); memcpy(&ret->mix_hash, mix->bytes, 32); // final Keccak hash SHA3_256(&ret->result, s_mix->bytes, 64 + 32); // Keccak-256(s + compressed_mix) return true; } void ethash_quick_hash( ethash_h256_t* return_hash, ethash_h256_t const* header_hash, uint64_t const nonce, ethash_h256_t const* mix_hash ) { uint8_t buf[64 + 32]; memcpy(buf, header_hash, 32); fix_endian64_same(nonce); memcpy(&(buf[32]), &nonce, 8); SHA3_512(buf, buf, 40); memcpy(&(buf[64]), mix_hash, 32); SHA3_256(return_hash, buf, 64 + 32); } ethash_h256_t ethash_get_seedhash(uint64_t block_number) { ethash_h256_t ret; ethash_h256_reset(&ret); uint64_t const epochs = block_number / ETHASH_EPOCH_LENGTH; for (uint32_t i = 0; i < epochs; ++i) SHA3_256(&ret, (uint8_t*)&ret, 32); return ret; } bool ethash_quick_check_difficulty( ethash_h256_t const* header_hash, uint64_t const nonce, ethash_h256_t const* mix_hash, ethash_h256_t const* difficulty ) { ethash_h256_t return_hash; ethash_quick_hash(&return_hash, header_hash, nonce, mix_hash); return ethash_check_difficulty(&return_hash, difficulty); } ethash_light_t ethash_light_new_internal(uint64_t cache_size, ethash_h256_t const* seed) { struct ethash_light *ret; ret = calloc(sizeof(*ret), 1); if (!ret) { return NULL; } ret->cache = malloc((size_t)cache_size); if (!ret->cache) { goto fail_free_light; } node* nodes = (node*)ret->cache; if (!ethash_compute_cache_nodes(nodes, cache_size, seed)) { goto fail_free_cache_mem; } ret->cache_size = cache_size; return ret; fail_free_cache_mem: free(ret->cache); fail_free_light: free(ret); return NULL; } ethash_light_t ethash_light_new(uint64_t block_number) { ethash_h256_t seedhash = ethash_get_seedhash(block_number); ethash_light_t ret; ret = ethash_light_new_internal(ethash_get_cachesize(block_number), &seedhash); ret->block_number = block_number; return ret; } void ethash_light_delete(ethash_light_t light) { if (light->cache) { free(light->cache); } free(light); } ethash_return_value_t ethash_light_compute_internal( ethash_light_t light, uint64_t full_size, ethash_h256_t const header_hash, uint64_t nonce ) { ethash_return_value_t ret; ret.success = true; if (!ethash_hash(&ret, NULL, light, full_size, header_hash, nonce)) { ret.success = false; } return ret; } ethash_return_value_t ethash_light_compute( ethash_light_t light, ethash_h256_t const header_hash, uint64_t nonce ) { uint64_t full_size = ethash_get_datasize(light->block_number); return ethash_light_compute_internal(light, full_size, header_hash, nonce); } static bool ethash_mmap(struct ethash_full* ret, FILE* f) { int fd; char* mmapped_data; ret->file = f; if ((fd = ethash_fileno(ret->file)) == -1) { return false; } mmapped_data = mmap( NULL, (size_t)ret->file_size + ETHASH_DAG_MAGIC_NUM_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0 ); if (mmapped_data == MAP_FAILED) { return false; } ret->data = (node*)(mmapped_data + ETHASH_DAG_MAGIC_NUM_SIZE); return true; } ethash_full_t ethash_full_new_internal( char const* dirname, ethash_h256_t const seed_hash, uint64_t full_size, ethash_light_t const light, ethash_callback_t callback ) { struct ethash_full* ret; FILE *f = NULL; ret = calloc(sizeof(*ret), 1); if (!ret) { return NULL; } ret->file_size = (size_t)full_size; switch (ethash_io_prepare(dirname, seed_hash, &f, (size_t)full_size, false)) { case ETHASH_IO_FAIL: goto fail_free_full; case ETHASH_IO_MEMO_MATCH: if (!ethash_mmap(ret, f)) { goto fail_close_file; } return ret; case ETHASH_IO_MEMO_SIZE_MISMATCH: // if a DAG of same filename but unexpected size is found, silently force new file creation if (ethash_io_prepare(dirname, seed_hash, &f, (size_t)full_size, true) != ETHASH_IO_MEMO_MISMATCH) { goto fail_free_full; } // fallthrough to the mismatch case here, DO NOT go through match case ETHASH_IO_MEMO_MISMATCH: if (!ethash_mmap(ret, f)) { goto fail_close_file; } break; } if (!ethash_compute_full_data(ret->data, full_size, light, callback)) { goto fail_free_full_data; } // after the DAG has been filled then we finalize it by writting the magic number at the beginning if (fseek(f, 0, SEEK_SET) != 0) { goto fail_free_full_data; } uint64_t const magic_num = ETHASH_DAG_MAGIC_NUM; if (fwrite(&magic_num, ETHASH_DAG_MAGIC_NUM_SIZE, 1, f) != 1) { goto fail_free_full_data; } fflush(f); // make sure the magic number IS there return ret; fail_free_full_data: // could check that munmap(..) == 0 but even if it did not can't really do anything here munmap(ret->data, (size_t)full_size); fail_close_file: fclose(ret->file); fail_free_full: free(ret); return NULL; } ethash_full_t ethash_full_new(ethash_light_t light, ethash_callback_t callback) { char strbuf[256]; if (!ethash_get_default_dirname(strbuf, 256)) { return NULL; } uint64_t full_size = ethash_get_datasize(light->block_number); ethash_h256_t seedhash = ethash_get_seedhash(light->block_number); return ethash_full_new_internal(strbuf, seedhash, full_size, light, callback); } void ethash_full_delete(ethash_full_t full) { // could check that munmap(..) == 0 but even if it did not can't really do anything here munmap(full->data, (size_t)full->file_size); if (full->file) { fclose(full->file); } free(full); } ethash_return_value_t ethash_full_compute( ethash_full_t full, ethash_h256_t const header_hash, uint64_t nonce ) { ethash_return_value_t ret; ret.success = true; if (!ethash_hash( &ret, (node const*)full->data, NULL, full->file_size, header_hash, nonce)) { ret.success = false; } return ret; } void const* ethash_full_dag(ethash_full_t full) { return full->data; } uint64_t ethash_full_dag_size(ethash_full_t full) { return full->file_size; }