/*
This file is part of cpp-ethereum.
cpp-ethereum is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
cpp-ethereum is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with cpp-ethereum. If not, see .
*/
/** @file BlockInfo.cpp
* @author Gav Wood
* @date 2014
*/
#include
#include
#include
#include
#include
#include
#include "EthashAux.h"
#include "Exceptions.h"
#include "BlockInfo.h"
using namespace std;
using namespace dev;
using namespace dev::eth;
BlockInfo::BlockInfo(): m_timestamp(Invalid256)
{
}
BlockInfo::BlockInfo(bytesConstRef _block, Strictness _s, h256 const& _hashWith, BlockDataType _bdt)
{
RLP header = _bdt == BlockData ? extractHeader(_block) : RLP(_block);
m_hash = _hashWith ? _hashWith : sha3(header.data());
populateFromHeader(header, _s);
}
void BlockInfo::clear()
{
m_parentHash = h256();
m_sha3Uncles = EmptyListSHA3;
m_coinbaseAddress = Address();
m_stateRoot = EmptyTrie;
m_transactionsRoot = EmptyTrie;
m_receiptsRoot = EmptyTrie;
m_logBloom = LogBloom();
m_difficulty = 0;
m_number = 0;
m_gasLimit = 0;
m_gasUsed = 0;
m_timestamp = 0;
m_extraData.clear();
noteDirty();
}
h256 const& BlockInfo::boundary() const
{
if (!m_boundary && m_difficulty)
m_boundary = (h256)(u256)((bigint(1) << 256) / m_difficulty);
return m_boundary;
}
h256 const& BlockInfo::hashWithout() const
{
if (!m_hashWithout)
{
RLPStream s(BasicFields);
streamRLPFields(s);
m_hashWithout = sha3(s.out());
}
return m_hashWithout;
}
void BlockInfo::streamRLPFields(RLPStream& _s) const
{
_s << m_parentHash << m_sha3Uncles << m_coinbaseAddress << m_stateRoot << m_transactionsRoot << m_receiptsRoot << m_logBloom
<< m_difficulty << m_number << m_gasLimit << m_gasUsed << m_timestamp << m_extraData;
}
h256 BlockInfo::headerHashFromBlock(bytesConstRef _block)
{
return sha3(RLP(_block)[0].data());
}
RLP BlockInfo::extractHeader(bytesConstRef _block)
{
RLP root(_block);
if (!root.isList())
BOOST_THROW_EXCEPTION(InvalidBlockFormat() << errinfo_comment("block needs to be a list") << BadFieldError(0, _block.toString()));
RLP header = root[0];
if (!header.isList())
BOOST_THROW_EXCEPTION(InvalidBlockFormat() << errinfo_comment("block header needs to be a list") << BadFieldError(0, header.data().toString()));
if (!root[1].isList())
BOOST_THROW_EXCEPTION(InvalidBlockFormat() << errinfo_comment("block transactions need to be a list") << BadFieldError(1, root[1].data().toString()));
if (!root[2].isList())
BOOST_THROW_EXCEPTION(InvalidBlockFormat() << errinfo_comment("block uncles need to be a list") << BadFieldError(2, root[2].data().toString()));
return header;
}
void BlockInfo::populateFromHeader(RLP const& _header, Strictness _s)
{
int field = 0;
try
{
m_parentHash = _header[field = 0].toHash(RLP::VeryStrict);
m_sha3Uncles = _header[field = 1].toHash(RLP::VeryStrict);
m_coinbaseAddress = _header[field = 2].toHash(RLP::VeryStrict);
m_stateRoot = _header[field = 3].toHash(RLP::VeryStrict);
m_transactionsRoot = _header[field = 4].toHash(RLP::VeryStrict);
m_receiptsRoot = _header[field = 5].toHash(RLP::VeryStrict);
m_logBloom = _header[field = 6].toHash(RLP::VeryStrict);
m_difficulty = _header[field = 7].toInt();
m_number = _header[field = 8].toInt();
m_gasLimit = _header[field = 9].toInt();
m_gasUsed = _header[field = 10].toInt();
m_timestamp = _header[field = 11].toInt();
m_extraData = _header[field = 12].toBytes();
}
catch (Exception const& _e)
{
_e << errinfo_name("invalid block header format") << BadFieldError(field, toHex(_header[field].data().toBytes()));
throw;
}
if (m_number > ~(unsigned)0)
BOOST_THROW_EXCEPTION(InvalidNumber());
if (_s != CheckNothing && m_gasUsed > m_gasLimit)
BOOST_THROW_EXCEPTION(TooMuchGasUsed() << RequirementError(bigint(m_gasLimit), bigint(m_gasUsed)));
}
struct BlockInfoDiagnosticsChannel: public LogChannel { static const char* name() { return EthBlue "▧" EthWhite " ◌"; } static const int verbosity = 9; };
void BlockInfo::verifyInternals(bytesConstRef _block) const
{
RLP root(_block);
auto txList = root[1];
auto expectedRoot = trieRootOver(txList.itemCount(), [&](unsigned i){ return rlp(i); }, [&](unsigned i){ return txList[i].data().toBytes(); });
clog(BlockInfoDiagnosticsChannel) << "Expected trie root:" << toString(expectedRoot);
if (m_transactionsRoot != expectedRoot)
{
MemoryDB tm;
GenericTrieDB transactionsTrie(&tm);
transactionsTrie.init();
vector txs;
for (unsigned i = 0; i < txList.itemCount(); ++i)
{
RLPStream k;
k << i;
transactionsTrie.insert(&k.out(), txList[i].data());
txs.push_back(txList[i].data());
cdebug << toHex(k.out()) << toHex(txList[i].data());
}
cdebug << "trieRootOver" << expectedRoot;
cdebug << "orderedTrieRoot" << orderedTrieRoot(txs);
cdebug << "TrieDB" << transactionsTrie.root();
cdebug << "Contents:";
for (auto const& t: txs)
cdebug << toHex(t);
BOOST_THROW_EXCEPTION(InvalidTransactionsRoot() << Hash256RequirementError(expectedRoot, m_transactionsRoot));
}
clog(BlockInfoDiagnosticsChannel) << "Expected uncle hash:" << toString(sha3(root[2].data()));
if (m_sha3Uncles != sha3(root[2].data()))
BOOST_THROW_EXCEPTION(InvalidUnclesHash() << Hash256RequirementError(sha3(root[2].data()), m_sha3Uncles));
}
void BlockInfo::populateFromParent(BlockInfo const& _parent)
{
m_stateRoot = _parent.stateRoot();
m_number = _parent.m_number + 1;
m_parentHash = _parent.m_hash;
m_gasLimit = _parent.childGasLimit();
m_gasUsed = 0;
m_difficulty = calculateDifficulty(_parent);
}
u256 BlockInfo::childGasLimit(u256 const& _gasFloorTarget) const
{
u256 gasFloorTarget =
_gasFloorTarget == UndefinedU256 ? c_gasFloorTarget : _gasFloorTarget;
if (m_gasLimit < gasFloorTarget)
return min(gasFloorTarget, m_gasLimit + m_gasLimit / c_gasLimitBoundDivisor - 1);
else
return max(gasFloorTarget, m_gasLimit - m_gasLimit / c_gasLimitBoundDivisor + 1 + (m_gasUsed * 6 / 5) / c_gasLimitBoundDivisor);
}
u256 BlockInfo::calculateDifficulty(BlockInfo const& _parent) const
{
const unsigned c_expDiffPeriod = 100000;
if (!m_number)
throw GenesisBlockCannotBeCalculated();
u256 o = max(c_minimumDifficulty, m_timestamp >= _parent.m_timestamp + c_durationLimit ? _parent.m_difficulty - (_parent.m_difficulty / c_difficultyBoundDivisor) : (_parent.m_difficulty + (_parent.m_difficulty / c_difficultyBoundDivisor)));
unsigned periodCount = unsigned(_parent.number() + 1) / c_expDiffPeriod;
if (periodCount > 1)
o = max(c_minimumDifficulty, o + (u256(1) << (periodCount - 2))); // latter will eventually become huge, so ensure it's a bigint.
return o;
}
void BlockInfo::verifyParent(BlockInfo const& _parent) const
{
// Check timestamp is after previous timestamp.
if (m_parentHash)
{
if (m_timestamp <= _parent.m_timestamp)
BOOST_THROW_EXCEPTION(InvalidTimestamp());
if (m_number != _parent.m_number + 1)
BOOST_THROW_EXCEPTION(InvalidNumber());
}
}