/*
This file is part of cpp-ethereum.
cpp-ethereum is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
cpp-ethereum is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with cpp-ethereum. If not, see .
*/
/** @file Common.cpp
* @author Alex Leverington
* @author Gav Wood
* @date 2014
*/
#include "Common.h"
#include
#include
#include
#include
#include
#include
#include
#include
#include
#if ETH_HAVE_SECP256K1
#include
#endif
#include "AES.h"
#include "CryptoPP.h"
#include "Exceptions.h"
using namespace std;
using namespace dev;
using namespace dev::crypto;
#ifdef ETH_HAVE_SECP256K1
struct Secp256k1Context
{
Secp256k1Context() { ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY); }
~Secp256k1Context() { secp256k1_context_destroy(ctx); }
secp256k1_context_t* ctx;
operator secp256k1_context_t const*() const { return ctx; }
};
static Secp256k1Context s_secp256k1;
#endif
static Secp256k1PP s_secp256k1pp;
bool dev::SignatureStruct::isValid() const noexcept
{
if (v > 1 ||
r >= h256("0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141") ||
s >= h256("0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141") ||
s < h256(1) ||
r < h256(1))
return false;
return true;
}
Public SignatureStruct::recover(h256 const& _hash) const
{
return dev::recover((Signature)*this, _hash);
}
Address dev::ZeroAddress = Address();
Public dev::toPublic(Secret const& _secret)
{
#ifdef ETH_HAVE_SECP256K1
bytes o(65);
int pubkeylen;
if (!secp256k1_ec_pubkey_create(s_secp256k1, o.data(), &pubkeylen, _secret.data(), false))
return Public();
return FixedHash<64>(o.data()+1, Public::ConstructFromPointer);
#else
Public p;
s_secp256k1pp.toPublic(_secret, p);
return p;
#endif
}
Address dev::toAddress(Public const& _public)
{
return right160(sha3(_public.ref()));
}
Address dev::toAddress(Secret const& _secret)
{
Public p;
s_secp256k1pp.toPublic(_secret, p);
return toAddress(p);
}
Address dev::toAddress(Address const& _from, u256 const& _nonce)
{
return right160(sha3(rlpList(_from, _nonce)));
}
void dev::encrypt(Public const& _k, bytesConstRef _plain, bytes& o_cipher)
{
bytes io = _plain.toBytes();
s_secp256k1pp.encrypt(_k, io);
o_cipher = std::move(io);
}
bool dev::decrypt(Secret const& _k, bytesConstRef _cipher, bytes& o_plaintext)
{
bytes io = _cipher.toBytes();
s_secp256k1pp.decrypt(_k, io);
if (io.empty())
return false;
o_plaintext = std::move(io);
return true;
}
void dev::encryptECIES(Public const& _k, bytesConstRef _plain, bytes& o_cipher)
{
bytes io = _plain.toBytes();
s_secp256k1pp.encryptECIES(_k, io);
o_cipher = std::move(io);
}
bool dev::decryptECIES(Secret const& _k, bytesConstRef _cipher, bytes& o_plaintext)
{
bytes io = _cipher.toBytes();
if (!s_secp256k1pp.decryptECIES(_k, io))
return false;
o_plaintext = std::move(io);
return true;
}
void dev::encryptSym(Secret const& _k, bytesConstRef _plain, bytes& o_cipher)
{
// TOOD: @alex @subtly do this properly.
encrypt(KeyPair(_k).pub(), _plain, o_cipher);
}
bool dev::decryptSym(Secret const& _k, bytesConstRef _cipher, bytes& o_plain)
{
// TODO: @alex @subtly do this properly.
return decrypt(_k, _cipher, o_plain);
}
std::pair dev::encryptSymNoAuth(SecureFixedHash<16> const& _k, bytesConstRef _plain)
{
h128 iv(Nonce::get());
return make_pair(encryptSymNoAuth(_k, iv, _plain), iv);
}
bytes dev::encryptAES128CTR(bytesConstRef _k, h128 const& _iv, bytesConstRef _plain)
{
if (_k.size() != 16 && _k.size() != 24 && _k.size() != 32)
return bytes();
SecByteBlock key(_k.data(), _k.size());
try
{
CTR_Mode::Encryption e;
e.SetKeyWithIV(key, key.size(), _iv.data());
bytes ret(_plain.size());
e.ProcessData(ret.data(), _plain.data(), _plain.size());
return ret;
}
catch (CryptoPP::Exception& _e)
{
cerr << _e.what() << endl;
return bytes();
}
}
bytesSec dev::decryptAES128CTR(bytesConstRef _k, h128 const& _iv, bytesConstRef _cipher)
{
if (_k.size() != 16 && _k.size() != 24 && _k.size() != 32)
return bytesSec();
SecByteBlock key(_k.data(), _k.size());
try
{
CTR_Mode::Decryption d;
d.SetKeyWithIV(key, key.size(), _iv.data());
bytesSec ret(_cipher.size());
d.ProcessData(ret.writable().data(), _cipher.data(), _cipher.size());
return ret;
}
catch (CryptoPP::Exception& _e)
{
cerr << _e.what() << endl;
return bytesSec();
}
}
static const Public c_zeroKey("3f17f1962b36e491b30a40b2405849e597ba5fb5");
Public dev::recover(Signature const& _sig, h256 const& _message)
{
Public ret;
#ifdef ETH_HAVE_SECP256K1
bytes o(65);
int pubkeylen;
if (!secp256k1_ecdsa_recover_compact(s_secp256k1, _message.data(), _sig.data(), o.data(), &pubkeylen, false, _sig[64]))
return Public();
ret = FixedHash<64>(o.data() + 1, Public::ConstructFromPointer);
#else
ret = s_secp256k1pp.recover(_sig, _message.ref());
#endif
if (ret == c_zeroKey)
return Public();
return ret;
}
Signature dev::sign(Secret const& _k, h256 const& _hash)
{
#ifdef ETH_HAVE_SECP256K1
Signature s;
int v;
if (!secp256k1_ecdsa_sign_compact(s_secp256k1, _hash.data(), s.data(), _k.data(), NULL, NULL, &v))
return Signature();
s[64] = v;
return s;
#else
return s_secp256k1pp.sign(_k, _hash);
#endif
}
bool dev::verify(Public const& _p, Signature const& _s, h256 const& _hash)
{
if (!_p)
return false;
#ifdef ETH_HAVE_SECP256K1
return _p == recover(_s, _hash);
#else
return s_secp256k1pp.verify(_p, _s, _hash.ref(), true);
#endif
}
bytesSec dev::pbkdf2(string const& _pass, bytes const& _salt, unsigned _iterations, unsigned _dkLen)
{
bytesSec ret(_dkLen);
if (PKCS5_PBKDF2_HMAC().DeriveKey(
ret.writable().data(),
_dkLen,
0,
reinterpret_cast(_pass.data()),
_pass.size(),
_salt.data(),
_salt.size(),
_iterations
) != _iterations)
BOOST_THROW_EXCEPTION(CryptoException() << errinfo_comment("Key derivation failed."));
return ret;
}
bytesSec dev::scrypt(std::string const& _pass, bytes const& _salt, uint64_t _n, uint32_t _r, uint32_t _p, unsigned _dkLen)
{
bytesSec ret(_dkLen);
if (libscrypt_scrypt(
reinterpret_cast(_pass.data()),
_pass.size(),
_salt.data(),
_salt.size(),
_n,
_r,
_p,
ret.writable().data(),
_dkLen
) != 0)
BOOST_THROW_EXCEPTION(CryptoException() << errinfo_comment("Key derivation failed."));
return ret;
}
void KeyPair::populateFromSecret(Secret const& _sec)
{
m_secret = _sec;
if (s_secp256k1pp.verifySecret(m_secret, m_public))
m_address = toAddress(m_public);
}
KeyPair KeyPair::create()
{
for (int i = 0; i < 100; ++i)
{
KeyPair ret(Secret::random());
if (ret.address())
return ret;
}
return KeyPair();
}
KeyPair KeyPair::fromEncryptedSeed(bytesConstRef _seed, std::string const& _password)
{
return KeyPair(Secret(sha3(aesDecrypt(_seed, _password))));
}
h256 crypto::kdf(Secret const& _priv, h256 const& _hash)
{
// H(H(r||k)^h)
h256 s;
sha3mac(Nonce::get().ref(), _priv.ref(), s.ref());
s ^= _hash;
sha3(s.ref(), s.ref());
if (!s || !_hash || !_priv)
BOOST_THROW_EXCEPTION(InvalidState());
return s;
}
mutex Nonce::s_x;
static string s_seedFile;
h256 Nonce::get()
{
// todo: atomic efface bit, periodic save, kdf, rr, rng
// todo: encrypt
Guard l(Nonce::s_x);
return Nonce::singleton().next();
}
void Nonce::reset()
{
Guard l(Nonce::s_x);
Nonce::singleton().resetInternal();
}
void Nonce::setSeedFilePath(string const& _filePath)
{
s_seedFile = _filePath;
}
Nonce::~Nonce()
{
Guard l(Nonce::s_x);
if (m_value)
// this might throw
resetInternal();
}
Nonce& Nonce::singleton()
{
static Nonce s;
return s;
}
void Nonce::initialiseIfNeeded()
{
if (m_value)
return;
bytes b = contents(seedFile());
if (b.size() == 32)
memcpy(m_value.data(), b.data(), 32);
else
{
// todo: replace w/entropy from user and system
std::mt19937_64 s_eng(time(0) + chrono::high_resolution_clock::now().time_since_epoch().count());
std::uniform_int_distribution d(0, 255);
for (unsigned i = 0; i < 32; ++i)
m_value[i] = (uint8_t)d(s_eng);
}
if (!m_value)
BOOST_THROW_EXCEPTION(InvalidState());
// prevent seed reuse if process terminates abnormally
// this might throw
writeFile(seedFile(), bytes());
}
h256 Nonce::next()
{
initialiseIfNeeded();
m_value = sha3(m_value);
return m_value;
}
void Nonce::resetInternal()
{
// this might throw
next();
writeFile(seedFile(), m_value.asBytes());
m_value = h256();
}
string const& Nonce::seedFile()
{
if (s_seedFile.empty())
s_seedFile = getDataDir() + "/seed";
return s_seedFile;
}