/* This file is part of cpp-ethereum. cpp-ethereum is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. cpp-ethereum is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with cpp-ethereum. If not, see . */ /** @file Client.cpp * @author Gav Wood * @date 2014 */ #include "Client.h" #include #include #include #include #include #include #include "Defaults.h" #include "Executive.h" #include "EthereumHost.h" using namespace std; using namespace dev; using namespace dev::eth; using namespace p2p; VersionChecker::VersionChecker(string const& _dbPath): m_path(_dbPath.size() ? _dbPath : Defaults::dbPath()) { bytes statusBytes = contents(m_path + "/status"); RLP status(statusBytes); try { auto protocolVersion = (unsigned)status[0]; auto minorProtocolVersion = (unsigned)status[1]; auto databaseVersion = (unsigned)status[2]; m_action = protocolVersion != eth::c_protocolVersion || databaseVersion != c_databaseVersion ? WithExisting::Kill : minorProtocolVersion != eth::c_minorProtocolVersion ? WithExisting::Verify : WithExisting::Trust; } catch (...) { m_action = WithExisting::Kill; } } void VersionChecker::setOk() { if (m_action != WithExisting::Trust) { try { boost::filesystem::create_directory(m_path); } catch (...) { cwarn << "Unhandled exception! Failed to create directory: " << m_path << "\n" << boost::current_exception_diagnostic_information(); } writeFile(m_path + "/status", rlpList(eth::c_protocolVersion, eth::c_minorProtocolVersion, c_databaseVersion)); } } void BasicGasPricer::update(BlockChain const& _bc) { unsigned c = 0; h256 p = _bc.currentHash(); m_gasPerBlock = _bc.info(p).gasLimit; map dist; unsigned total = 0; while (c < 1000 && p) { BlockInfo bi = _bc.info(p); if (bi.transactionsRoot != EmptyTrie) { auto bb = _bc.block(p); RLP r(bb); BlockReceipts brs(_bc.receipts(bi.hash())); for (unsigned i = 0; i < r[1].size(); ++i) { auto gu = brs.receipts[i].gasUsed(); dist[Transaction(r[1][i].data(), CheckTransaction::None).gasPrice()] += (unsigned)brs.receipts[i].gasUsed(); total += (unsigned)gu; } } p = bi.parentHash; ++c; } if (total > 0) { unsigned t = 0; unsigned q = 1; m_octiles[0] = dist.begin()->first; for (auto const& i: dist) { for (; t <= total * q / 8 && t + i.second > total * q / 8; ++q) m_octiles[q] = i.first; if (q > 7) break; } m_octiles[8] = dist.rbegin()->first; } } Client::Client(p2p::Host* _extNet, std::string const& _dbPath, WithExisting _forceAction, u256 _networkId, int _miners): Worker("eth"), m_vc(_dbPath), m_bc(_dbPath, max(m_vc.action(), _forceAction), [](unsigned d, unsigned t){ cerr << "REVISING BLOCKCHAIN: Processed " << d << " of " << t << "...\r"; }), m_gp(new TrivialGasPricer), m_stateDB(State::openDB(_dbPath, max(m_vc.action(), _forceAction))), m_preMine(m_stateDB, BaseState::CanonGenesis), m_postMine(m_stateDB) { m_gp->update(m_bc); m_host = _extNet->registerCapability(new EthereumHost(m_bc, m_tq, m_bq, _networkId)); if (_miners > -1) setMiningThreads(_miners); else setMiningThreads(); if (_dbPath.size()) Defaults::setDBPath(_dbPath); m_vc.setOk(); doWork(); startWorking(); } Client::Client(p2p::Host* _extNet, std::shared_ptr _gp, std::string const& _dbPath, WithExisting _forceAction, u256 _networkId, int _miners): Worker("eth"), m_vc(_dbPath), m_bc(_dbPath, max(m_vc.action(), _forceAction), [](unsigned d, unsigned t){ cerr << "REVISING BLOCKCHAIN: Processed " << d << " of " << t << "...\r"; }), m_gp(_gp), m_stateDB(State::openDB(_dbPath, max(m_vc.action(), _forceAction))), m_preMine(m_stateDB), m_postMine(m_stateDB) { m_gp->update(m_bc); m_host = _extNet->registerCapability(new EthereumHost(m_bc, m_tq, m_bq, _networkId)); if (_miners > -1) setMiningThreads(_miners); else setMiningThreads(); if (_dbPath.size()) Defaults::setDBPath(_dbPath); m_vc.setOk(); doWork(); startWorking(); } Client::~Client() { stopWorking(); } void Client::setNetworkId(u256 _n) { if (auto h = m_host.lock()) h->setNetworkId(_n); } DownloadMan const* Client::downloadMan() const { if (auto h = m_host.lock()) return &(h->downloadMan()); return nullptr; } bool Client::isSyncing() const { if (auto h = m_host.lock()) return h->isSyncing(); return false; } void Client::doneWorking() { // Synchronise the state according to the head of the block chain. // TODO: currently it contains keys for *all* blocks. Make it remove old ones. WriteGuard l(x_stateDB); m_preMine.sync(m_bc); m_postMine = m_preMine; } void Client::killChain() { bool wasMining = isMining(); if (wasMining) stopMining(); stopWorking(); m_tq.clear(); m_bq.clear(); m_localMiners.clear(); m_preMine = State(); m_postMine = State(); { WriteGuard l(x_stateDB); m_stateDB = OverlayDB(); m_stateDB = State::openDB(Defaults::dbPath(), WithExisting::Kill); } m_bc.reopen(Defaults::dbPath(), WithExisting::Kill); m_preMine = State(m_stateDB); m_postMine = State(m_stateDB); if (auto h = m_host.lock()) h->reset(); doWork(); setMiningThreads(0); startWorking(); if (wasMining) startMining(); } void Client::clearPending() { h256Set changeds; { WriteGuard l(x_stateDB); if (!m_postMine.pending().size()) return; // for (unsigned i = 0; i < m_postMine.pending().size(); ++i) // appendFromNewPending(m_postMine.logBloom(i), changeds); changeds.insert(PendingChangedFilter); m_tq.clear(); m_postMine = m_preMine; } { ReadGuard l(x_localMiners); for (auto& m: m_localMiners) m.noteStateChange(); } noteChanged(changeds); } void Client::noteChanged(h256Set const& _filters) { Guard l(x_filtersWatches); if (_filters.size()) cnote << "noteChanged(" << _filters << ")"; // accrue all changes left in each filter into the watches. for (auto& w: m_watches) if (_filters.count(w.second.id)) { cwatch << "!!!" << w.first << w.second.id; if (m_filters.count(w.second.id)) // Normal filtering watch w.second.changes += m_filters.at(w.second.id).changes; else // Special ('pending'/'latest') watch w.second.changes.push_back(LocalisedLogEntry(SpecialLogEntry, 0)); } // clear the filters now. for (auto& i: m_filters) i.second.changes.clear(); } void Client::appendFromNewPending(TransactionReceipt const& _receipt, h256Set& io_changed, h256 _transactionHash) { Guard l(x_filtersWatches); for (pair& i: m_filters) if (i.second.filter.envelops(RelativeBlock::Pending, m_bc.number() + 1)) { // acceptable number. auto m = i.second.filter.matches(_receipt); if (m.size()) { // filter catches them for (LogEntry const& l: m) i.second.changes.push_back(LocalisedLogEntry(l, m_bc.number() + 1, _transactionHash)); io_changed.insert(i.first); } } } void Client::appendFromNewBlock(h256 const& _block, h256Set& io_changed) { // TODO: more precise check on whether the txs match. auto d = m_bc.info(_block); auto br = m_bc.receipts(_block); Guard l(x_filtersWatches); for (pair& i: m_filters) if (i.second.filter.envelops(RelativeBlock::Latest, d.number) && i.second.filter.matches(d.logBloom)) // acceptable number & looks like block may contain a matching log entry. for (size_t j = 0; j < br.receipts.size(); j++) { auto tr = br.receipts[j]; auto m = i.second.filter.matches(tr); if (m.size()) { auto transactionHash = transaction(d.hash(), j).sha3(); // filter catches them for (LogEntry const& l: m) i.second.changes.push_back(LocalisedLogEntry(l, (unsigned)d.number, transactionHash)); io_changed.insert(i.first); } } } void Client::setForceMining(bool _enable) { m_forceMining = _enable; ReadGuard l(x_localMiners); for (auto& m: m_localMiners) m.noteStateChange(); } void Client::setMiningThreads(unsigned _threads) { stopMining(); #if ETH_ETHASHCL unsigned t = 1; #else auto t = _threads ? _threads : thread::hardware_concurrency(); #endif WriteGuard l(x_localMiners); m_localMiners.clear(); m_localMiners.resize(t); unsigned i = 0; for (auto& m: m_localMiners) m.setup(this, i++); } MineProgress Client::miningProgress() const { MineProgress ret; ReadGuard l(x_localMiners); for (auto& m: m_localMiners) ret.combine(m.miningProgress()); return ret; } std::list Client::miningHistory() { std::list ret; ReadGuard l(x_localMiners); if (m_localMiners.empty()) return ret; ret = m_localMiners[0].miningHistory(); for (unsigned i = 1; i < m_localMiners.size(); ++i) { auto l = m_localMiners[i].miningHistory(); auto ri = ret.begin(); auto li = l.begin(); for (; ri != ret.end() && li != l.end(); ++ri, ++li) ri->combine(*li); } return ret; } void Client::setupState(State& _s) { { ReadGuard l(x_stateDB); cwork << "SETUP MINE"; _s = m_postMine; } if (m_paranoia) { if (_s.amIJustParanoid(m_bc)) { cnote << "I'm just paranoid. Block is fine."; _s.commitToMine(m_bc); } else { cwarn << "I'm not just paranoid. Cannot mine. Please file a bug report."; } } else _s.commitToMine(m_bc); } ExecutionResult Client::call(Address _dest, bytes const& _data, u256 _gas, u256 _value, u256 _gasPrice, Address const& _from) { ExecutionResult ret; try { State temp; // cdebug << "Nonce at " << toAddress(_secret) << " pre:" << m_preMine.transactionsFrom(toAddress(_secret)) << " post:" << m_postMine.transactionsFrom(toAddress(_secret)); { ReadGuard l(x_stateDB); temp = m_postMine; temp.addBalance(_from, _value + _gasPrice * _gas); } Executive e(temp, LastHashes(), 0); if (!e.call(_dest, _dest, _from, _value, _gasPrice, &_data, _gas, _from)) e.go(); ret = e.executionResult(); } catch (...) { // TODO: Some sort of notification of failure. } return ret; } pair Client::getWork() { Guard l(x_remoteMiner); { ReadGuard l(x_stateDB); m_remoteMiner.update(m_postMine, m_bc); } return make_pair(m_remoteMiner.workHash(), m_remoteMiner.difficulty()); } bool Client::submitWork(ProofOfWork::Proof const& _proof) { Guard l(x_remoteMiner); return m_remoteMiner.submitWork(_proof); } void Client::doWork() { // TODO: Use condition variable rather than polling. bool stillGotWork = false; cworkin << "WORK"; h256Set changeds; auto maintainMiner = [&](Miner& m) { if (m.isComplete()) { // TODO: enable a short-circuit option since we mined it. will need to get the end state from the miner. auto lm = dynamic_cast(&m); h256s hs; h256 c; if (false && lm && !m_verifyOwnBlocks) { // TODO: implement //m_bc.attemptImport(m_blockData(), m_stateDB, lm->state()); // TODO: derive hs from lm->state() } else { cwork << "CHAIN <== postSTATE"; WriteGuard l(x_stateDB); tie(hs, c) = m_bc.attemptImport(m.blockData(), m_stateDB); } if (hs.size()) { for (auto const& h: hs) if (h != c) appendFromNewBlock(h, changeds); changeds.insert(ChainChangedFilter); } for (auto& m: m_localMiners) m.noteStateChange(); } }; { ReadGuard l(x_localMiners); for (auto& m: m_localMiners) maintainMiner(m); } { Guard l(x_remoteMiner); maintainMiner(m_remoteMiner); } // Synchronise state to block chain. // This should remove any transactions on our queue that are included within our state. // It also guarantees that the state reflects the longest (valid!) chain on the block chain. // This might mean reverting to an earlier state and replaying some blocks, or, (worst-case: // if there are no checkpoints before our fork) reverting to the genesis block and replaying // all blocks. // Resynchronise state with block chain & trans bool resyncStateNeeded = false; { WriteGuard l(x_stateDB); cwork << "BQ ==> CHAIN ==> STATE"; OverlayDB db = m_stateDB; x_stateDB.unlock(); h256s fresh; h256s dead; bool sgw; tie(fresh, dead, sgw) = m_bc.sync(m_bq, db, 100); // insert transactions that we are declaring the dead part of the chain for (auto const& h: dead) { clog(ClientNote) << "Dead block:" << h.abridged(); for (auto const& t: m_bc.transactions(h)) { clog(ClientNote) << "Resubmitting transaction " << Transaction(t, CheckTransaction::None); m_tq.import(t); } } // remove transactions from m_tq nicely rather than relying on out of date nonce later on. for (auto const& h: fresh) { clog(ClientChat) << "Live block:" << h.abridged(); for (auto const& th: m_bc.transactionHashes(h)) { clog(ClientNote) << "Safely dropping transaction " << th; m_tq.drop(th); } } stillGotWork = stillGotWork | sgw; if (!fresh.empty()) { for (auto i: fresh) appendFromNewBlock(i, changeds); changeds.insert(ChainChangedFilter); } x_stateDB.lock(); if (fresh.size()) m_stateDB = db; cwork << "preSTATE <== CHAIN"; if (m_preMine.sync(m_bc) || m_postMine.address() != m_preMine.address()) { if (isMining()) cnote << "New block on chain: Restarting mining operation."; m_postMine = m_preMine; resyncStateNeeded = true; changeds.insert(PendingChangedFilter); // TODO: Move transactions pending from m_postMine back to transaction queue. } // returns TransactionReceipts, once for each transaction. cwork << "postSTATE <== TQ"; TransactionReceipts newPendingReceipts = m_postMine.sync(m_bc, m_tq, *m_gp); if (newPendingReceipts.size()) { for (size_t i = 0; i < newPendingReceipts.size(); i++) appendFromNewPending(newPendingReceipts[i], changeds, m_postMine.pending()[i].sha3()); changeds.insert(PendingChangedFilter); if (isMining()) cnote << "Additional transaction ready: Restarting mining operation."; resyncStateNeeded = true; if (auto h = m_host.lock()) h->noteNewTransactions(); } } if (!changeds.empty()) if (auto h = m_host.lock()) h->noteNewBlocks(); if (resyncStateNeeded) { ReadGuard l(x_localMiners); for (auto& m: m_localMiners) m.noteStateChange(); } cwork << "noteChanged" << changeds.size() << "items"; noteChanged(changeds); cworkout << "WORK"; if (!stillGotWork) this_thread::sleep_for(chrono::milliseconds(100)); if (chrono::system_clock::now() - m_lastGarbageCollection > chrono::seconds(5)) { // watches garbage collection vector toUninstall; { Guard l(x_filtersWatches); for (auto key: keysOf(m_watches)) if (m_watches[key].lastPoll != chrono::system_clock::time_point::max() && chrono::system_clock::now() - m_watches[key].lastPoll > chrono::seconds(20)) { toUninstall.push_back(key); cnote << "GC: Uninstall" << key << "(" << chrono::duration_cast(chrono::system_clock::now() - m_watches[key].lastPoll).count() << "s old)"; } } for (auto i: toUninstall) uninstallWatch(i); // blockchain GC m_bc.garbageCollect(); m_lastGarbageCollection = chrono::system_clock::now(); } } State Client::asOf(h256 const& _block) const { ReadGuard l(x_stateDB); return State(m_stateDB, bc(), _block); } void Client::prepareForTransaction() { startWorking(); } State Client::state(unsigned _txi, h256 _block) const { ReadGuard l(x_stateDB); return State(m_stateDB, m_bc, _block).fromPending(_txi); } eth::State Client::state(h256 _block) const { ReadGuard l(x_stateDB); return State(m_stateDB, m_bc, _block); } eth::State Client::state(unsigned _txi) const { ReadGuard l(x_stateDB); return m_postMine.fromPending(_txi); } void Client::inject(bytesConstRef _rlp) { startWorking(); m_tq.import(_rlp); } void Client::flushTransactions() { doWork(); }