#include "Compiler.h" #include #include #include #include #include #include #include #include #include #include #include "Instruction.h" #include "Type.h" #include "Memory.h" #include "Stack.h" #include "Ext.h" #include "GasMeter.h" #include "Utils.h" #include "Endianness.h" #include "Arith256.h" #include "RuntimeManager.h" namespace dev { namespace eth { namespace jit { Compiler::Compiler(Options const& _options): m_options(_options), m_builder(llvm::getGlobalContext()) { Type::init(m_builder.getContext()); } void Compiler::createBasicBlocks(bytes const& _bytecode) { /// Helper function that skips push data and finds next iterator (can be the end) auto skipPushDataAndGetNext = [](bytes::const_iterator _curr, bytes::const_iterator _end) { static const auto push1 = static_cast(Instruction::PUSH1); static const auto push32 = static_cast(Instruction::PUSH32); size_t offset = 1; if (*_curr >= push1 && *_curr <= push32) offset += std::min(*_curr - push1 + 1, (_end - _curr) - 1); return _curr + offset; }; auto begin = _bytecode.begin(); bool nextJumpDest = false; for (auto curr = begin, next = begin; curr != _bytecode.end(); curr = next) { next = skipPushDataAndGetNext(curr, _bytecode.end()); bool isEnd = false; switch (Instruction(*curr)) { case Instruction::JUMP: case Instruction::JUMPI: case Instruction::RETURN: case Instruction::STOP: case Instruction::SUICIDE: isEnd = true; break; case Instruction::JUMPDEST: nextJumpDest = true; break; default: break; } assert(next <= _bytecode.end()); if (next == _bytecode.end() || Instruction(*next) == Instruction::JUMPDEST) isEnd = true; if (isEnd) { auto beginIdx = begin - _bytecode.begin(); m_basicBlocks.emplace(std::piecewise_construct, std::forward_as_tuple(beginIdx), std::forward_as_tuple(begin, next, m_mainFunc, m_builder, nextJumpDest)); nextJumpDest = false; begin = next; } } m_stopBB = llvm::BasicBlock::Create(m_mainFunc->getContext(), "Stop", m_mainFunc); } llvm::BasicBlock* Compiler::getJumpTableBlock() { if (!m_jumpTableBlock) { m_jumpTableBlock.reset(new BasicBlock("JumpTable", m_mainFunc, m_builder, true)); InsertPointGuard g{m_builder}; m_builder.SetInsertPoint(m_jumpTableBlock->llvm()); auto dest = m_builder.CreatePHI(Type::Word, 8, "target"); auto switchInstr = m_builder.CreateSwitch(dest, getBadJumpBlock()); for (auto&& p : m_basicBlocks) { if (p.second.isJumpDest()) switchInstr->addCase(Constant::get(p.first), p.second.llvm()); } } return m_jumpTableBlock->llvm(); } llvm::BasicBlock* Compiler::getBadJumpBlock() { if (!m_badJumpBlock) { m_badJumpBlock.reset(new BasicBlock("BadJump", m_mainFunc, m_builder, true)); InsertPointGuard g{m_builder}; m_builder.SetInsertPoint(m_badJumpBlock->llvm()); m_builder.CreateRet(Constant::get(ReturnCode::BadJumpDestination)); } return m_badJumpBlock->llvm(); } std::unique_ptr Compiler::compile(bytes const& _bytecode, std::string const& _id) { auto compilationStartTime = std::chrono::high_resolution_clock::now(); auto module = std::unique_ptr(new llvm::Module(_id, m_builder.getContext())); // Create main function auto mainFuncType = llvm::FunctionType::get(Type::MainReturn, Type::RuntimePtr, false); m_mainFunc = llvm::Function::Create(mainFuncType, llvm::Function::ExternalLinkage, _id, module.get()); m_mainFunc->getArgumentList().front().setName("rt"); // Create the basic blocks. auto entryBlock = llvm::BasicBlock::Create(m_builder.getContext(), "entry", m_mainFunc); m_builder.SetInsertPoint(entryBlock); createBasicBlocks(_bytecode); // Init runtime structures. RuntimeManager runtimeManager(m_builder); GasMeter gasMeter(m_builder, runtimeManager); Memory memory(runtimeManager, gasMeter); Ext ext(runtimeManager, memory); Stack stack(m_builder, runtimeManager); Arith256 arith(m_builder); m_builder.CreateBr(m_basicBlocks.empty() ? m_stopBB : m_basicBlocks.begin()->second.llvm()); for (auto basicBlockPairIt = m_basicBlocks.begin(); basicBlockPairIt != m_basicBlocks.end(); ++basicBlockPairIt) { auto& basicBlock = basicBlockPairIt->second; auto iterCopy = basicBlockPairIt; ++iterCopy; auto nextBasicBlock = (iterCopy != m_basicBlocks.end()) ? iterCopy->second.llvm() : nullptr; compileBasicBlock(basicBlock, _bytecode, runtimeManager, arith, memory, ext, gasMeter, nextBasicBlock); } // Code for special blocks: // TODO: move to separate function. m_builder.SetInsertPoint(m_stopBB); m_builder.CreateRet(Constant::get(ReturnCode::Stop)); removeDeadBlocks(); // Link jump table target index if (m_jumpTableBlock) { auto phi = llvm::cast(&m_jumpTableBlock->llvm()->getInstList().front()); for (auto predIt = llvm::pred_begin(m_jumpTableBlock->llvm()); predIt != llvm::pred_end(m_jumpTableBlock->llvm()); ++predIt) { BasicBlock* pred = nullptr; for (auto&& p : m_basicBlocks) { if (p.second.llvm() == *predIt) { pred = &p.second; break; } } phi->addIncoming(pred->getJumpTarget(), pred->llvm()); } } dumpCFGifRequired("blocks-init.dot"); if (m_options.optimizeStack) { std::vector blockList; for (auto& entry : m_basicBlocks) blockList.push_back(&entry.second); if (m_jumpTableBlock) blockList.push_back(m_jumpTableBlock.get()); BasicBlock::linkLocalStacks(blockList, m_builder); dumpCFGifRequired("blocks-opt.dot"); } for (auto& entry : m_basicBlocks) entry.second.synchronizeLocalStack(stack); if (m_jumpTableBlock) m_jumpTableBlock->synchronizeLocalStack(stack); dumpCFGifRequired("blocks-sync.dot"); if (m_jumpTableBlock && m_options.rewriteSwitchToBranches) { llvm::FunctionPassManager fpManager(module.get()); fpManager.add(llvm::createLowerSwitchPass()); fpManager.doInitialization(); fpManager.run(*m_mainFunc); } auto compilationEndTime = std::chrono::high_resolution_clock::now(); clog(JIT) << "JIT: " << std::chrono::duration_cast(compilationEndTime - compilationStartTime).count(); return module; } void Compiler::compileBasicBlock(BasicBlock& _basicBlock, bytes const& _bytecode, RuntimeManager& _runtimeManager, Arith256& _arith, Memory& _memory, Ext& _ext, GasMeter& _gasMeter, llvm::BasicBlock* _nextBasicBlock) { if (!_nextBasicBlock) // this is the last block in the code _nextBasicBlock = m_stopBB; m_builder.SetInsertPoint(_basicBlock.llvm()); auto& stack = _basicBlock.localStack(); for (auto it = _basicBlock.begin(); it != _basicBlock.end(); ++it) { auto inst = Instruction(*it); _gasMeter.count(inst); switch (inst) { case Instruction::ADD: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto result = m_builder.CreateAdd(lhs, rhs); stack.push(result); break; } case Instruction::SUB: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto result = m_builder.CreateSub(lhs, rhs); stack.push(result); break; } case Instruction::MUL: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto res = _arith.mul(lhs, rhs); stack.push(res); break; } case Instruction::DIV: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto res = _arith.div(lhs, rhs); stack.push(res); break; } case Instruction::SDIV: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto res = _arith.sdiv(lhs, rhs); stack.push(res); break; } case Instruction::MOD: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto res = _arith.mod(lhs, rhs); stack.push(res); break; } case Instruction::SMOD: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto res = _arith.smod(lhs, rhs); stack.push(res); break; } case Instruction::EXP: { auto base = stack.pop(); auto exponent = stack.pop(); _gasMeter.countExp(exponent); auto ret = _arith.exp(base, exponent); stack.push(ret); break; } case Instruction::NOT: { auto value = stack.pop(); auto ret = m_builder.CreateXor(value, Constant::get(-1), "bnot"); stack.push(ret); break; } case Instruction::LT: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto res1 = m_builder.CreateICmpULT(lhs, rhs); auto res256 = m_builder.CreateZExt(res1, Type::Word); stack.push(res256); break; } case Instruction::GT: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto res1 = m_builder.CreateICmpUGT(lhs, rhs); auto res256 = m_builder.CreateZExt(res1, Type::Word); stack.push(res256); break; } case Instruction::SLT: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto res1 = m_builder.CreateICmpSLT(lhs, rhs); auto res256 = m_builder.CreateZExt(res1, Type::Word); stack.push(res256); break; } case Instruction::SGT: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto res1 = m_builder.CreateICmpSGT(lhs, rhs); auto res256 = m_builder.CreateZExt(res1, Type::Word); stack.push(res256); break; } case Instruction::EQ: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto res1 = m_builder.CreateICmpEQ(lhs, rhs); auto res256 = m_builder.CreateZExt(res1, Type::Word); stack.push(res256); break; } case Instruction::ISZERO: { auto top = stack.pop(); auto iszero = m_builder.CreateICmpEQ(top, Constant::get(0), "iszero"); auto result = m_builder.CreateZExt(iszero, Type::Word); stack.push(result); break; } case Instruction::AND: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto res = m_builder.CreateAnd(lhs, rhs); stack.push(res); break; } case Instruction::OR: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto res = m_builder.CreateOr(lhs, rhs); stack.push(res); break; } case Instruction::XOR: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto res = m_builder.CreateXor(lhs, rhs); stack.push(res); break; } case Instruction::BYTE: { const auto byteNum = stack.pop(); auto value = stack.pop(); value = Endianness::toBE(m_builder, value); auto bytes = m_builder.CreateBitCast(value, llvm::VectorType::get(Type::Byte, 32), "bytes"); auto safeByteNum = m_builder.CreateZExt(m_builder.CreateTrunc(byteNum, m_builder.getIntNTy(5)), Type::lowPrecision); // Trim index, large values can crash auto byte = m_builder.CreateExtractElement(bytes, safeByteNum, "byte"); value = m_builder.CreateZExt(byte, Type::Word); auto byteNumValid = m_builder.CreateICmpULT(byteNum, Constant::get(32)); value = m_builder.CreateSelect(byteNumValid, value, Constant::get(0)); stack.push(value); break; } case Instruction::ADDMOD: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto mod = stack.pop(); auto res = _arith.addmod(lhs, rhs, mod); stack.push(res); break; } case Instruction::MULMOD: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto mod = stack.pop(); auto res = _arith.mulmod(lhs, rhs, mod); stack.push(res); break; } case Instruction::SIGNEXTEND: { auto idx = stack.pop(); auto word = stack.pop(); auto k32_ = m_builder.CreateTrunc(idx, m_builder.getIntNTy(5), "k_32"); auto k32 = m_builder.CreateZExt(k32_, Type::Word); auto k32x8 = m_builder.CreateMul(k32, Constant::get(8), "kx8"); // test for word >> (k * 8 + 7) auto bitpos = m_builder.CreateAdd(k32x8, Constant::get(7), "bitpos"); auto bitval = m_builder.CreateLShr(word, bitpos, "bitval"); auto bittest = m_builder.CreateTrunc(bitval, Type::Bool, "bittest"); auto mask_ = m_builder.CreateShl(Constant::get(1), bitpos); auto mask = m_builder.CreateSub(mask_, Constant::get(1), "mask"); auto negmask = m_builder.CreateXor(mask, llvm::ConstantInt::getAllOnesValue(Type::Word), "negmask"); auto val1 = m_builder.CreateOr(word, negmask); auto val0 = m_builder.CreateAnd(word, mask); auto kInRange = m_builder.CreateICmpULE(idx, llvm::ConstantInt::get(Type::Word, 30)); auto result = m_builder.CreateSelect(kInRange, m_builder.CreateSelect(bittest, val1, val0), word); stack.push(result); break; } case Instruction::SHA3: { auto inOff = stack.pop(); auto inSize = stack.pop(); _memory.require(inOff, inSize); _gasMeter.countSha3Data(inSize); auto hash = _ext.sha3(inOff, inSize); stack.push(hash); break; } case Instruction::POP: { auto val = stack.pop(); static_cast(val); // Generate a dummy use of val to make sure that a get(0) will be emitted at this point, // so that StackTooSmall will be thrown // m_builder.CreateICmpEQ(val, val, "dummy"); break; } case Instruction::ANY_PUSH: { auto value = readPushData(it, _basicBlock.end()); stack.push(Constant::get(value)); break; } case Instruction::ANY_DUP: { auto index = static_cast(inst) - static_cast(Instruction::DUP1); stack.dup(index); break; } case Instruction::ANY_SWAP: { auto index = static_cast(inst) - static_cast(Instruction::SWAP1) + 1; stack.swap(index); break; } case Instruction::MLOAD: { auto addr = stack.pop(); auto word = _memory.loadWord(addr); stack.push(word); break; } case Instruction::MSTORE: { auto addr = stack.pop(); auto word = stack.pop(); _memory.storeWord(addr, word); break; } case Instruction::MSTORE8: { auto addr = stack.pop(); auto word = stack.pop(); _memory.storeByte(addr, word); break; } case Instruction::MSIZE: { auto word = _memory.getSize(); stack.push(word); break; } case Instruction::SLOAD: { auto index = stack.pop(); auto value = _ext.sload(index); stack.push(value); break; } case Instruction::SSTORE: { auto index = stack.pop(); auto value = stack.pop(); _gasMeter.countSStore(_ext, index, value); _ext.sstore(index, value); break; } case Instruction::JUMP: case Instruction::JUMPI: { llvm::BasicBlock* targetBlock = nullptr; auto target = stack.pop(); if (auto constant = llvm::dyn_cast(target)) { auto&& c = constant->getValue(); auto targetIdx = c.getActiveBits() <= 64 ? c.getZExtValue() : -1; auto it = m_basicBlocks.find(targetIdx); targetBlock = (it != m_basicBlocks.end() && it->second.isJumpDest()) ? it->second.llvm() : getBadJumpBlock(); } // TODO: Improve; check for constants if (inst == Instruction::JUMP) { if (targetBlock) { m_builder.CreateBr(targetBlock); } else { _basicBlock.setJumpTarget(target); m_builder.CreateBr(getJumpTableBlock()); } } else // JUMPI { auto val = stack.pop(); auto zero = Constant::get(0); auto cond = m_builder.CreateICmpNE(val, zero, "nonzero"); if (targetBlock) { m_builder.CreateCondBr(cond, targetBlock, _nextBasicBlock); } else { _basicBlock.setJumpTarget(target); m_builder.CreateCondBr(cond, getJumpTableBlock(), _nextBasicBlock); } } break; } case Instruction::JUMPDEST: { // Nothing to do break; } case Instruction::PC: { auto value = Constant::get(it - _bytecode.begin()); stack.push(value); break; } case Instruction::GAS: { _gasMeter.commitCostBlock(); stack.push(_runtimeManager.getGas()); break; } case Instruction::ADDRESS: case Instruction::CALLER: case Instruction::ORIGIN: case Instruction::CALLVALUE: case Instruction::CALLDATASIZE: case Instruction::CODESIZE: case Instruction::GASPRICE: case Instruction::COINBASE: case Instruction::TIMESTAMP: case Instruction::NUMBER: case Instruction::DIFFICULTY: case Instruction::GASLIMIT: { // Pushes an element of runtime data on stack stack.push(_runtimeManager.get(inst)); break; } case Instruction::BLOCKHASH: { auto number = stack.pop(); auto hash = _ext.blockhash(number); stack.push(hash); break; } case Instruction::BALANCE: { auto address = stack.pop(); auto value = _ext.balance(address); stack.push(value); break; } case Instruction::EXTCODESIZE: { auto addr = stack.pop(); auto codeRef = _ext.extcode(addr); stack.push(codeRef.size); break; } case Instruction::CALLDATACOPY: { auto destMemIdx = stack.pop(); auto srcIdx = stack.pop(); auto reqBytes = stack.pop(); auto srcPtr = _runtimeManager.getCallData(); auto srcSize = _runtimeManager.get(RuntimeData::CallDataSize); _memory.copyBytes(srcPtr, srcSize, srcIdx, destMemIdx, reqBytes); break; } case Instruction::CODECOPY: { auto destMemIdx = stack.pop(); auto srcIdx = stack.pop(); auto reqBytes = stack.pop(); auto srcPtr = _runtimeManager.getCode(); // TODO: Code & its size are constants, feature #80814234 auto srcSize = _runtimeManager.get(RuntimeData::CodeSize); _memory.copyBytes(srcPtr, srcSize, srcIdx, destMemIdx, reqBytes); break; } case Instruction::EXTCODECOPY: { auto addr = stack.pop(); auto destMemIdx = stack.pop(); auto srcIdx = stack.pop(); auto reqBytes = stack.pop(); auto codeRef = _ext.extcode(addr); _memory.copyBytes(codeRef.ptr, codeRef.size, srcIdx, destMemIdx, reqBytes); break; } case Instruction::CALLDATALOAD: { auto index = stack.pop(); auto value = _ext.calldataload(index); stack.push(value); break; } case Instruction::CREATE: { auto endowment = stack.pop(); auto initOff = stack.pop(); auto initSize = stack.pop(); _memory.require(initOff, initSize); _gasMeter.commitCostBlock(); auto gas = _runtimeManager.getGas(); auto address = _ext.create(gas, endowment, initOff, initSize); _runtimeManager.setGas(gas); stack.push(address); break; } case Instruction::CALL: case Instruction::CALLCODE: { auto gas = stack.pop(); auto codeAddress = stack.pop(); auto value = stack.pop(); auto inOff = stack.pop(); auto inSize = stack.pop(); auto outOff = stack.pop(); auto outSize = stack.pop(); _gasMeter.commitCostBlock(); // Require memory for in and out buffers _memory.require(outOff, outSize); // Out buffer first as we guess it will be after the in one _memory.require(inOff, inSize); auto receiveAddress = codeAddress; if (inst == Instruction::CALLCODE) receiveAddress = _runtimeManager.get(RuntimeData::Address); _gasMeter.count(gas); auto ret = _ext.call(gas, receiveAddress, value, inOff, inSize, outOff, outSize, codeAddress); _gasMeter.giveBack(gas); stack.push(ret); break; } case Instruction::RETURN: { auto index = stack.pop(); auto size = stack.pop(); _memory.require(index, size); _runtimeManager.registerReturnData(index, size); m_builder.CreateRet(Constant::get(ReturnCode::Return)); break; } case Instruction::SUICIDE: { _runtimeManager.registerSuicide(stack.pop()); m_builder.CreateRet(Constant::get(ReturnCode::Suicide)); break; } case Instruction::STOP: { m_builder.CreateRet(Constant::get(ReturnCode::Stop)); break; } case Instruction::LOG0: case Instruction::LOG1: case Instruction::LOG2: case Instruction::LOG3: case Instruction::LOG4: { auto beginIdx = stack.pop(); auto numBytes = stack.pop(); _memory.require(beginIdx, numBytes); // This will commit the current cost block _gasMeter.countLogData(numBytes); std::array topics{{}}; auto numTopics = static_cast(inst) - static_cast(Instruction::LOG0); for (size_t i = 0; i < numTopics; ++i) topics[i] = stack.pop(); _ext.log(beginIdx, numBytes, topics); break; } default: // Invalid instruction - runtime exception { // TODO: Replace with return statement _runtimeManager.raiseException(ReturnCode::BadInstruction); } } } _gasMeter.commitCostBlock(); // Block may have no terminator if the next instruction is a jump destination. if (!_basicBlock.llvm()->getTerminator()) m_builder.CreateBr(_nextBasicBlock); } void Compiler::removeDeadBlocks() { // Remove dead basic blocks auto sthErased = false; do { sthErased = false; for (auto it = m_basicBlocks.begin(); it != m_basicBlocks.end();) { auto llvmBB = it->second.llvm(); if (llvm::pred_begin(llvmBB) == llvm::pred_end(llvmBB)) { llvmBB->eraseFromParent(); m_basicBlocks.erase(it++); sthErased = true; } else ++it; } } while (sthErased); } void Compiler::dumpCFGifRequired(std::string const& _dotfilePath) { if (! m_options.dumpCFG) return; // TODO: handle i/o failures std::ofstream ofs(_dotfilePath); dumpCFGtoStream(ofs); ofs.close(); } void Compiler::dumpCFGtoStream(std::ostream& _out) { _out << "digraph BB {\n" << " node [shape=record, fontname=Courier, fontsize=10];\n" << " entry [share=record, label=\"entry block\"];\n"; std::vector blocks; for (auto& pair : m_basicBlocks) blocks.push_back(&pair.second); if (m_jumpTableBlock) blocks.push_back(m_jumpTableBlock.get()); if (m_badJumpBlock) blocks.push_back(m_badJumpBlock.get()); // std::map phiNodesPerBlock; // Output nodes for (auto bb : blocks) { std::string blockName = bb->llvm()->getName(); std::ostringstream oss; bb->dump(oss, true); _out << " \"" << blockName << "\" [shape=record, label=\" { " << blockName << "|" << oss.str() << "} \"];\n"; } // Output edges for (auto bb : blocks) { std::string blockName = bb->llvm()->getName(); auto end = llvm::pred_end(bb->llvm()); for (llvm::pred_iterator it = llvm::pred_begin(bb->llvm()); it != end; ++it) { _out << " \"" << (*it)->getName().str() << "\" -> \"" << blockName << "\" [" << ((m_jumpTableBlock.get() && *it == m_jumpTableBlock.get()->llvm()) ? "style = dashed, " : "") << "];\n"; } } _out << "}\n"; } void Compiler::dump() { for (auto& entry : m_basicBlocks) entry.second.dump(); if (m_jumpTableBlock != nullptr) m_jumpTableBlock->dump(); } } } }