/* This file is part of cpp-ethereum. cpp-ethereum is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. cpp-ethereum is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with cpp-ethereum. If not, see . */ /** * @author Christian * @date 2014 * Solidity abstract syntax tree. */ #include #include #include #include #include #include #include #include using namespace std; namespace dev { namespace solidity { TypeError ASTNode::createTypeError(string const& _description) const { return TypeError() << errinfo_sourceLocation(getLocation()) << errinfo_comment(_description); } TypePointer ContractDefinition::getType(ContractDefinition const* _currentContract) const { return make_shared(make_shared(*this), _currentContract); } void ContractDefinition::checkTypeRequirements() { for (ASTPointer const& baseSpecifier: getBaseContracts()) baseSpecifier->checkTypeRequirements(); checkDuplicateFunctions(); checkIllegalOverrides(); checkAbstractFunctions(); checkAbstractConstructors(); FunctionDefinition const* constructor = getConstructor(); if (constructor && !constructor->getReturnParameters().empty()) BOOST_THROW_EXCEPTION(constructor->getReturnParameterList()->createTypeError( "Non-empty \"returns\" directive for constructor.")); FunctionDefinition const* fallbackFunction = nullptr; for (ASTPointer const& function: getDefinedFunctions()) { if (function->getName().empty()) { if (fallbackFunction) BOOST_THROW_EXCEPTION(DeclarationError() << errinfo_comment("Only one fallback function is allowed.")); else { fallbackFunction = function.get(); if (!fallbackFunction->getParameters().empty()) BOOST_THROW_EXCEPTION(fallbackFunction->getParameterList().createTypeError("Fallback function cannot take parameters.")); } } if (!function->isFullyImplemented()) setFullyImplemented(false); } for (ASTPointer const& modifier: getFunctionModifiers()) modifier->checkTypeRequirements(); for (ASTPointer const& function: getDefinedFunctions()) function->checkTypeRequirements(); for (ASTPointer const& variable: m_stateVariables) variable->checkTypeRequirements(); checkExternalTypeClashes(); // check for hash collisions in function signatures set> hashes; for (auto const& it: getInterfaceFunctionList()) { FixedHash<4> const& hash = it.first; if (hashes.count(hash)) BOOST_THROW_EXCEPTION(createTypeError( std::string("Function signature hash collision for ") + it.second->externalSignature())); hashes.insert(hash); } } map, FunctionTypePointer> ContractDefinition::getInterfaceFunctions() const { auto exportedFunctionList = getInterfaceFunctionList(); map, FunctionTypePointer> exportedFunctions; for (auto const& it: exportedFunctionList) exportedFunctions.insert(it); solAssert(exportedFunctionList.size() == exportedFunctions.size(), "Hash collision at Function Definition Hash calculation"); return exportedFunctions; } FunctionDefinition const* ContractDefinition::getConstructor() const { for (ASTPointer const& f: m_definedFunctions) if (f->isConstructor()) return f.get(); return nullptr; } FunctionDefinition const* ContractDefinition::getFallbackFunction() const { for (ContractDefinition const* contract: getLinearizedBaseContracts()) for (ASTPointer const& f: contract->getDefinedFunctions()) if (f->getName().empty()) return f.get(); return nullptr; } void ContractDefinition::checkDuplicateFunctions() const { /// Checks that two functions with the same name defined in this contract have different /// argument types and that there is at most one constructor. map> functions; for (ASTPointer const& function: getDefinedFunctions()) functions[function->getName()].push_back(function.get()); if (functions[getName()].size() > 1) BOOST_THROW_EXCEPTION( DeclarationError() << errinfo_sourceLocation(getLocation()) << errinfo_comment("More than one constructor defined.") ); for (auto const& it: functions) { vector const& overloads = it.second; for (size_t i = 0; i < overloads.size(); ++i) for (size_t j = i + 1; j < overloads.size(); ++j) if (FunctionType(*overloads[i]).hasEqualArgumentTypes(FunctionType(*overloads[j]))) BOOST_THROW_EXCEPTION( DeclarationError() << errinfo_sourceLocation(overloads[j]->getLocation()) << errinfo_comment("Function with same name and arguments already defined.") ); } } void ContractDefinition::checkAbstractFunctions() { map functions; // Search from base to derived for (ContractDefinition const* contract: boost::adaptors::reverse(getLinearizedBaseContracts())) for (ASTPointer const& function: contract->getDefinedFunctions()) { string const& name = function->getName(); if (!function->isFullyImplemented() && functions.count(name) && functions[name]) BOOST_THROW_EXCEPTION(function->createTypeError("Redeclaring an already implemented function as abstract")); functions[name] = function->isFullyImplemented(); } for (auto const& it: functions) if (!it.second) { setFullyImplemented(false); break; } } void ContractDefinition::checkAbstractConstructors() { set argumentsNeeded; // check that we get arguments for all base constructors that need it. // If not mark the contract as abstract (not fully implemented) vector const& bases = getLinearizedBaseContracts(); for (ContractDefinition const* contract: bases) if (FunctionDefinition const* constructor = contract->getConstructor()) if (contract != this && !constructor->getParameters().empty()) argumentsNeeded.insert(contract); for (ContractDefinition const* contract: bases) { if (FunctionDefinition const* constructor = contract->getConstructor()) for (auto const& modifier: constructor->getModifiers()) { auto baseContract = dynamic_cast( &modifier->getName()->getReferencedDeclaration() ); if (baseContract) argumentsNeeded.erase(baseContract); } for (ASTPointer const& base: contract->getBaseContracts()) { auto baseContract = dynamic_cast( &base->getName()->getReferencedDeclaration() ); solAssert(baseContract, ""); if (!base->getArguments().empty()) argumentsNeeded.erase(baseContract); } } if (!argumentsNeeded.empty()) setFullyImplemented(false); } void ContractDefinition::checkIllegalOverrides() const { // TODO unify this at a later point. for this we need to put the constness and the access specifier // into the types map> functions; map modifiers; // We search from derived to base, so the stored item causes the error. for (ContractDefinition const* contract: getLinearizedBaseContracts()) { for (ASTPointer const& function: contract->getDefinedFunctions()) { if (function->isConstructor()) continue; // constructors can neither be overridden nor override anything string const& name = function->getName(); if (modifiers.count(name)) BOOST_THROW_EXCEPTION(modifiers[name]->createTypeError("Override changes function to modifier.")); FunctionType functionType(*function); // function should not change the return type for (FunctionDefinition const* overriding: functions[name]) { FunctionType overridingType(*overriding); if (!overridingType.hasEqualArgumentTypes(functionType)) continue; if ( overriding->getVisibility() != function->getVisibility() || overriding->isDeclaredConst() != function->isDeclaredConst() || overridingType != functionType ) BOOST_THROW_EXCEPTION(overriding->createTypeError("Override changes extended function signature.")); } functions[name].push_back(function.get()); } for (ASTPointer const& modifier: contract->getFunctionModifiers()) { string const& name = modifier->getName(); ModifierDefinition const*& override = modifiers[name]; if (!override) override = modifier.get(); else if (ModifierType(*override) != ModifierType(*modifier)) BOOST_THROW_EXCEPTION(override->createTypeError("Override changes modifier signature.")); if (!functions[name].empty()) BOOST_THROW_EXCEPTION(override->createTypeError("Override changes modifier to function.")); } } } void ContractDefinition::checkExternalTypeClashes() const { map>>> externalDeclarations; for (ContractDefinition const* contract: getLinearizedBaseContracts()) { for (ASTPointer const& f: contract->getDefinedFunctions()) if (f->isPartOfExternalInterface()) { auto functionType = make_shared(*f); externalDeclarations[functionType->externalSignature(f->getName())].push_back( make_pair(f.get(), functionType) ); } for (ASTPointer const& v: contract->getStateVariables()) if (v->isPartOfExternalInterface()) { auto functionType = make_shared(*v); externalDeclarations[functionType->externalSignature(v->getName())].push_back( make_pair(v.get(), functionType) ); } } for (auto const& it: externalDeclarations) for (size_t i = 0; i < it.second.size(); ++i) for (size_t j = i + 1; j < it.second.size(); ++j) if (!it.second[i].second->hasEqualArgumentTypes(*it.second[j].second)) BOOST_THROW_EXCEPTION(it.second[j].first->createTypeError( "Function overload clash during conversion to external types for arguments." )); } std::vector> const& ContractDefinition::getInterfaceEvents() const { if (!m_interfaceEvents) { set eventsSeen; m_interfaceEvents.reset(new std::vector>()); for (ContractDefinition const* contract: getLinearizedBaseContracts()) for (ASTPointer const& e: contract->getEvents()) if (eventsSeen.count(e->getName()) == 0) { eventsSeen.insert(e->getName()); m_interfaceEvents->push_back(e); } } return *m_interfaceEvents; } vector, FunctionTypePointer>> const& ContractDefinition::getInterfaceFunctionList() const { if (!m_interfaceFunctionList) { set functionsSeen; set signaturesSeen; m_interfaceFunctionList.reset(new vector, FunctionTypePointer>>()); for (ContractDefinition const* contract: getLinearizedBaseContracts()) { for (ASTPointer const& f: contract->getDefinedFunctions()) { string functionSignature = f->externalSignature(); if (f->isPartOfExternalInterface() && signaturesSeen.count(functionSignature) == 0) { functionsSeen.insert(f->getName()); signaturesSeen.insert(functionSignature); FixedHash<4> hash(dev::sha3(functionSignature)); m_interfaceFunctionList->push_back(make_pair(hash, make_shared(*f, false))); } } for (ASTPointer const& v: contract->getStateVariables()) if (functionsSeen.count(v->getName()) == 0 && v->isPartOfExternalInterface()) { FunctionType ftype(*v); solAssert(v->getType().get(), ""); functionsSeen.insert(v->getName()); FixedHash<4> hash(dev::sha3(ftype.externalSignature(v->getName()))); m_interfaceFunctionList->push_back(make_pair(hash, make_shared(*v))); } } } return *m_interfaceFunctionList; } vector const& ContractDefinition::getInheritableMembers() const { if (!m_inheritableMembers) { set memberSeen; m_inheritableMembers.reset(new vector()); auto addInheritableMember = [&](Declaration const* _decl) { if (memberSeen.count(_decl->getName()) == 0 && _decl->isVisibleInDerivedContracts()) { memberSeen.insert(_decl->getName()); m_inheritableMembers->push_back(_decl); } }; for (ASTPointer const& f: getDefinedFunctions()) addInheritableMember(f.get()); for (ASTPointer const& v: getStateVariables()) addInheritableMember(v.get()); for (ASTPointer const& s: getDefinedStructs()) addInheritableMember(s.get()); } return *m_inheritableMembers; } TypePointer EnumValue::getType(ContractDefinition const*) const { EnumDefinition const* parentDef = dynamic_cast(getScope()); solAssert(parentDef, "Enclosing Scope of EnumValue was not set"); return make_shared(*parentDef); } void InheritanceSpecifier::checkTypeRequirements() { m_baseName->checkTypeRequirements(nullptr); for (ASTPointer const& argument: m_arguments) argument->checkTypeRequirements(nullptr); ContractDefinition const* base = dynamic_cast(&m_baseName->getReferencedDeclaration()); solAssert(base, "Base contract not available."); TypePointers parameterTypes = ContractType(*base).getConstructorType()->getParameterTypes(); if (!m_arguments.empty() && parameterTypes.size() != m_arguments.size()) BOOST_THROW_EXCEPTION(createTypeError("Wrong argument count for constructor call.")); for (size_t i = 0; i < m_arguments.size(); ++i) if (!m_arguments[i]->getType()->isImplicitlyConvertibleTo(*parameterTypes[i])) BOOST_THROW_EXCEPTION(createTypeError("Invalid type for argument in constructer call.")); } TypePointer StructDefinition::getType(ContractDefinition const*) const { return make_shared(make_shared(*this)); } void StructDefinition::checkMemberTypes() const { for (ASTPointer const& member: getMembers()) if (!member->getType()->canBeStored()) BOOST_THROW_EXCEPTION(member->createTypeError("Type cannot be used in struct.")); } void StructDefinition::checkRecursion() const { set definitionsSeen; vector queue = {this}; while (!queue.empty()) { StructDefinition const* def = queue.back(); queue.pop_back(); if (definitionsSeen.count(def)) BOOST_THROW_EXCEPTION(ParserError() << errinfo_sourceLocation(def->getLocation()) << errinfo_comment("Recursive struct definition.")); definitionsSeen.insert(def); for (ASTPointer const& member: def->getMembers()) if (member->getType()->getCategory() == Type::Category::Struct) { UserDefinedTypeName const& typeName = dynamic_cast(*member->getTypeName()); queue.push_back(&dynamic_cast(*typeName.getReferencedDeclaration())); } } } TypePointer EnumDefinition::getType(ContractDefinition const*) const { return make_shared(make_shared(*this)); } TypePointer FunctionDefinition::getType(ContractDefinition const*) const { return make_shared(*this); } void FunctionDefinition::checkTypeRequirements() { for (ASTPointer const& var: getParameters() + getReturnParameters()) { if (!var->getType()->canLiveOutsideStorage()) BOOST_THROW_EXCEPTION(var->createTypeError("Type is required to live outside storage.")); // todo delete when will be implemented arrays as parameter type in internal functions if (getVisibility() == Visibility::Public && var->getType()->getCategory() == Type::Category::Array) BOOST_THROW_EXCEPTION(var->createTypeError("Arrays only implemented for external functions.")); if (getVisibility() >= Visibility::Public && !(var->getType()->externalType())) BOOST_THROW_EXCEPTION(var->createTypeError("Internal type is not allowed for public and external functions.")); } for (ASTPointer const& modifier: m_functionModifiers) modifier->checkTypeRequirements(isConstructor() ? dynamic_cast(*getScope()).getLinearizedBaseContracts() : vector()); if (m_body) m_body->checkTypeRequirements(); } string FunctionDefinition::externalSignature() const { return FunctionType(*this).externalSignature(getName()); } bool VariableDeclaration::isLValue() const { // External function parameters and constant declared variables are Read-Only return !isExternalFunctionParameter() && !m_isConstant; } void VariableDeclaration::checkTypeRequirements() { // Variables can be declared without type (with "var"), in which case the first assignment // sets the type. // Note that assignments before the first declaration are legal because of the special scoping // rules inherited from JavaScript. if (m_isConstant) { if (!dynamic_cast(getScope())) BOOST_THROW_EXCEPTION(createTypeError("Illegal use of \"constant\" specifier.")); if ((m_type && !m_type->isValueType()) || !m_value) BOOST_THROW_EXCEPTION(createTypeError("Unitialized \"constant\" variable.")); } if (m_type) { if (m_value) m_value->expectType(*m_type); } else { if (!m_value) // This feature might be extended in the future. BOOST_THROW_EXCEPTION(createTypeError("Assignment necessary for type detection.")); m_value->checkTypeRequirements(nullptr); TypePointer type = m_value->getType(); if (type->getCategory() == Type::Category::IntegerConstant) { auto intType = dynamic_pointer_cast(type)->getIntegerType(); if (!intType) BOOST_THROW_EXCEPTION(m_value->createTypeError("Invalid integer constant " + type->toString() + ".")); type = intType; } else if (type->getCategory() == Type::Category::Void) BOOST_THROW_EXCEPTION(createTypeError("Variable cannot have void type.")); m_type = type; } if (m_isStateVariable && getVisibility() >= Visibility::Public && !FunctionType(*this).externalType()) BOOST_THROW_EXCEPTION(createTypeError("Internal type is not allowed for public state variables.")); } bool VariableDeclaration::isExternalFunctionParameter() const { auto const* function = dynamic_cast(getScope()); if (!function || function->getVisibility() != Declaration::Visibility::External) return false; for (auto const& variable: function->getParameters()) if (variable.get() == this) return true; return false; } TypePointer ModifierDefinition::getType(ContractDefinition const*) const { return make_shared(*this); } void ModifierDefinition::checkTypeRequirements() { m_body->checkTypeRequirements(); } void ModifierInvocation::checkTypeRequirements(vector const& _bases) { TypePointers argumentTypes; for (ASTPointer const& argument: m_arguments) { argument->checkTypeRequirements(nullptr); argumentTypes.push_back(argument->getType()); } m_modifierName->checkTypeRequirements(&argumentTypes); auto const* declaration = &m_modifierName->getReferencedDeclaration(); vector> emptyParameterList; vector> const* parameters = nullptr; if (auto modifier = dynamic_cast(declaration)) parameters = &modifier->getParameters(); else // check parameters for Base constructors for (ContractDefinition const* base: _bases) if (declaration == base) { if (auto referencedConstructor = base->getConstructor()) parameters = &referencedConstructor->getParameters(); else parameters = &emptyParameterList; break; } if (!parameters) BOOST_THROW_EXCEPTION(createTypeError("Referenced declaration is neither modifier nor base class.")); if (parameters->size() != m_arguments.size()) BOOST_THROW_EXCEPTION(createTypeError("Wrong argument count for modifier invocation.")); for (size_t i = 0; i < m_arguments.size(); ++i) if (!m_arguments[i]->getType()->isImplicitlyConvertibleTo(*(*parameters)[i]->getType())) BOOST_THROW_EXCEPTION(createTypeError("Invalid type for argument in modifier invocation.")); } void EventDefinition::checkTypeRequirements() { int numIndexed = 0; for (ASTPointer const& var: getParameters()) { if (var->isIndexed()) numIndexed++; if (!var->getType()->canLiveOutsideStorage()) BOOST_THROW_EXCEPTION(var->createTypeError("Type is required to live outside storage.")); if (!var->getType()->externalType()) BOOST_THROW_EXCEPTION(var->createTypeError("Internal type is not allowed as event parameter type.")); } if (numIndexed > 3) BOOST_THROW_EXCEPTION(createTypeError("More than 3 indexed arguments for event.")); } void Block::checkTypeRequirements() { for (shared_ptr const& statement: m_statements) statement->checkTypeRequirements(); } void IfStatement::checkTypeRequirements() { m_condition->expectType(BoolType()); m_trueBody->checkTypeRequirements(); if (m_falseBody) m_falseBody->checkTypeRequirements(); } void WhileStatement::checkTypeRequirements() { m_condition->expectType(BoolType()); m_body->checkTypeRequirements(); } void ForStatement::checkTypeRequirements() { if (m_initExpression) m_initExpression->checkTypeRequirements(); if (m_condExpression) m_condExpression->expectType(BoolType()); if (m_loopExpression) m_loopExpression->checkTypeRequirements(); m_body->checkTypeRequirements(); } void Return::checkTypeRequirements() { if (!m_expression) return; if (!m_returnParameters) BOOST_THROW_EXCEPTION(createTypeError("Return arguments not allowed.")); if (m_returnParameters->getParameters().size() != 1) BOOST_THROW_EXCEPTION(createTypeError("Different number of arguments in return statement " "than in returns declaration.")); // this could later be changed such that the paramaters type is an anonymous struct type, // but for now, we only allow one return parameter m_expression->expectType(*m_returnParameters->getParameters().front()->getType()); } void VariableDeclarationStatement::checkTypeRequirements() { m_variable->checkTypeRequirements(); } void Assignment::checkTypeRequirements(TypePointers const*) { m_leftHandSide->checkTypeRequirements(nullptr); m_leftHandSide->requireLValue(); if (m_leftHandSide->getType()->getCategory() == Type::Category::Mapping) BOOST_THROW_EXCEPTION(createTypeError("Mappings cannot be assigned to.")); m_type = m_leftHandSide->getType(); if (m_assigmentOperator == Token::Assign) m_rightHandSide->expectType(*m_type); else { // compound assignment m_rightHandSide->checkTypeRequirements(nullptr); TypePointer resultType = m_type->binaryOperatorResult(Token::AssignmentToBinaryOp(m_assigmentOperator), m_rightHandSide->getType()); if (!resultType || *resultType != *m_type) BOOST_THROW_EXCEPTION(createTypeError("Operator " + string(Token::toString(m_assigmentOperator)) + " not compatible with types " + m_type->toString() + " and " + m_rightHandSide->getType()->toString())); } } void ExpressionStatement::checkTypeRequirements() { m_expression->checkTypeRequirements(nullptr); if (m_expression->getType()->getCategory() == Type::Category::IntegerConstant) if (!dynamic_pointer_cast(m_expression->getType())->getIntegerType()) BOOST_THROW_EXCEPTION(m_expression->createTypeError("Invalid integer constant.")); } void Expression::expectType(Type const& _expectedType) { checkTypeRequirements(nullptr); Type const& type = *getType(); if (!type.isImplicitlyConvertibleTo(_expectedType)) BOOST_THROW_EXCEPTION(createTypeError("Type " + type.toString() + " not implicitly convertible to expected type " + _expectedType.toString() + ".")); } void Expression::requireLValue() { if (!isLValue()) BOOST_THROW_EXCEPTION(createTypeError("Expression has to be an lvalue.")); m_lvalueRequested = true; } void UnaryOperation::checkTypeRequirements(TypePointers const*) { // Inc, Dec, Add, Sub, Not, BitNot, Delete m_subExpression->checkTypeRequirements(nullptr); if (m_operator == Token::Value::Inc || m_operator == Token::Value::Dec || m_operator == Token::Value::Delete) m_subExpression->requireLValue(); m_type = m_subExpression->getType()->unaryOperatorResult(m_operator); if (!m_type) BOOST_THROW_EXCEPTION(createTypeError("Unary operator not compatible with type.")); } void BinaryOperation::checkTypeRequirements(TypePointers const*) { m_left->checkTypeRequirements(nullptr); m_right->checkTypeRequirements(nullptr); m_commonType = m_left->getType()->binaryOperatorResult(m_operator, m_right->getType()); if (!m_commonType) BOOST_THROW_EXCEPTION(createTypeError("Operator " + string(Token::toString(m_operator)) + " not compatible with types " + m_left->getType()->toString() + " and " + m_right->getType()->toString())); m_type = Token::isCompareOp(m_operator) ? make_shared() : m_commonType; } void FunctionCall::checkTypeRequirements(TypePointers const*) { bool isPositionalCall = m_names.empty(); // we need to check arguments' type first as they will be forwarded to // m_expression->checkTypeRequirements TypePointers argumentTypes; for (ASTPointer const& argument: m_arguments) { argument->checkTypeRequirements(nullptr); // only store them for positional calls if (isPositionalCall) argumentTypes.push_back(argument->getType()); } m_expression->checkTypeRequirements(isPositionalCall ? &argumentTypes : nullptr); Type const* expressionType = m_expression->getType().get(); if (isTypeConversion()) { TypeType const& type = dynamic_cast(*expressionType); //@todo for structs, we have to check the number of arguments to be equal to the // number of non-mapping members if (m_arguments.size() != 1) BOOST_THROW_EXCEPTION(createTypeError("More than one argument for explicit type conversion.")); if (!isPositionalCall) BOOST_THROW_EXCEPTION(createTypeError("Type conversion cannot allow named arguments.")); if (!m_arguments.front()->getType()->isExplicitlyConvertibleTo(*type.getActualType())) BOOST_THROW_EXCEPTION(createTypeError("Explicit type conversion not allowed.")); m_type = type.getActualType(); } else if (FunctionType const* functionType = dynamic_cast(expressionType)) { //@todo would be nice to create a struct type from the arguments // and then ask if that is implicitly convertible to the struct represented by the // function parameters TypePointers const& parameterTypes = functionType->getParameterTypes(); if (!functionType->takesArbitraryParameters() && parameterTypes.size() != m_arguments.size()) BOOST_THROW_EXCEPTION(createTypeError("Wrong argument count for function call.")); if (isPositionalCall) { // call by positional arguments for (size_t i = 0; i < m_arguments.size(); ++i) if (!functionType->takesArbitraryParameters() && !m_arguments[i]->getType()->isImplicitlyConvertibleTo(*parameterTypes[i])) BOOST_THROW_EXCEPTION(m_arguments[i]->createTypeError("Invalid type for argument in function call.")); } else { // call by named arguments if (functionType->takesArbitraryParameters()) BOOST_THROW_EXCEPTION(createTypeError("Named arguments cannnot be used for functions " "that take arbitrary parameters.")); auto const& parameterNames = functionType->getParameterNames(); if (parameterNames.size() != m_names.size()) BOOST_THROW_EXCEPTION(createTypeError("Some argument names are missing.")); // check duplicate names for (size_t i = 0; i < m_names.size(); i++) for (size_t j = i + 1; j < m_names.size(); j++) if (*m_names[i] == *m_names[j]) BOOST_THROW_EXCEPTION(m_arguments[i]->createTypeError("Duplicate named argument.")); for (size_t i = 0; i < m_names.size(); i++) { bool found = false; for (size_t j = 0; j < parameterNames.size(); j++) { if (parameterNames[j] == *m_names[i]) { // check type convertible if (!m_arguments[i]->getType()->isImplicitlyConvertibleTo(*parameterTypes[j])) BOOST_THROW_EXCEPTION(createTypeError("Invalid type for argument in function call.")); found = true; break; } } if (!found) BOOST_THROW_EXCEPTION(createTypeError("Named argument does not match function declaration.")); } } // @todo actually the return type should be an anonymous struct, // but we change it to the type of the first return value until we have structs if (functionType->getReturnParameterTypes().empty()) m_type = make_shared(); else m_type = functionType->getReturnParameterTypes().front(); } else BOOST_THROW_EXCEPTION(createTypeError("Type is not callable.")); } bool FunctionCall::isTypeConversion() const { return m_expression->getType()->getCategory() == Type::Category::TypeType; } void NewExpression::checkTypeRequirements(TypePointers const*) { m_contractName->checkTypeRequirements(nullptr); m_contract = dynamic_cast(&m_contractName->getReferencedDeclaration()); if (!m_contract) BOOST_THROW_EXCEPTION(createTypeError("Identifier is not a contract.")); if (!m_contract->isFullyImplemented()) BOOST_THROW_EXCEPTION(createTypeError("Trying to create an instance of an abstract contract.")); shared_ptr contractType = make_shared(*m_contract); TypePointers const& parameterTypes = contractType->getConstructorType()->getParameterTypes(); m_type = make_shared(parameterTypes, TypePointers{contractType}, FunctionType::Location::Creation); } void MemberAccess::checkTypeRequirements(TypePointers const* _argumentTypes) { m_expression->checkTypeRequirements(nullptr); Type const& type = *m_expression->getType(); MemberList::MemberMap possibleMembers = type.getMembers().membersByName(*m_memberName); if (possibleMembers.size() > 1 && _argumentTypes) { // do override resolution for (auto it = possibleMembers.begin(); it != possibleMembers.end();) if ( it->type->getCategory() == Type::Category::Function && !dynamic_cast(*it->type).canTakeArguments(*_argumentTypes) ) it = possibleMembers.erase(it); else ++it; } if (possibleMembers.size() == 0) BOOST_THROW_EXCEPTION(createTypeError( "Member \"" + *m_memberName + "\" not found or not visible " "after argument-dependent lookup in " + type.toString() )); else if (possibleMembers.size() > 1) BOOST_THROW_EXCEPTION(createTypeError( "Member \"" + *m_memberName + "\" not unique " "after argument-dependent lookup in " + type.toString() )); m_referencedDeclaration = possibleMembers.front().declaration; m_type = possibleMembers.front().type; if (type.getCategory() == Type::Category::Struct) m_isLValue = true; else if (type.getCategory() == Type::Category::Array) { auto const& arrayType(dynamic_cast(type)); m_isLValue = (*m_memberName == "length" && arrayType.getLocation() != ArrayType::Location::CallData && arrayType.isDynamicallySized()); } else m_isLValue = false; } void IndexAccess::checkTypeRequirements(TypePointers const*) { m_base->checkTypeRequirements(nullptr); switch (m_base->getType()->getCategory()) { case Type::Category::Array: { ArrayType const& type = dynamic_cast(*m_base->getType()); if (!m_index) BOOST_THROW_EXCEPTION(createTypeError("Index expression cannot be omitted.")); m_index->expectType(IntegerType(256)); if (type.isByteArray()) m_type = make_shared(1); else m_type = type.getBaseType(); m_isLValue = type.getLocation() != ArrayType::Location::CallData; break; } case Type::Category::Mapping: { MappingType const& type = dynamic_cast(*m_base->getType()); if (!m_index) BOOST_THROW_EXCEPTION(createTypeError("Index expression cannot be omitted.")); m_index->expectType(*type.getKeyType()); m_type = type.getValueType(); m_isLValue = true; break; } case Type::Category::TypeType: { TypeType const& type = dynamic_cast(*m_base->getType()); if (!m_index) m_type = make_shared(make_shared(ArrayType::Location::Memory, type.getActualType())); else { m_index->checkTypeRequirements(nullptr); auto length = dynamic_cast(m_index->getType().get()); if (!length) BOOST_THROW_EXCEPTION(m_index->createTypeError("Integer constant expected.")); m_type = make_shared(make_shared( ArrayType::Location::Memory, type.getActualType(), length->literalValue(nullptr))); } break; } default: BOOST_THROW_EXCEPTION(m_base->createTypeError( "Indexed expression has to be a type, mapping or array (is " + m_base->getType()->toString() + ")")); } } void Identifier::checkTypeRequirements(TypePointers const* _argumentTypes) { if (!m_referencedDeclaration) { if (!_argumentTypes) BOOST_THROW_EXCEPTION(createTypeError("Unable to determine overloaded type.")); overloadResolution(*_argumentTypes); } solAssert(!!m_referencedDeclaration, "Referenced declaration is null after overload resolution."); m_isLValue = m_referencedDeclaration->isLValue(); m_type = m_referencedDeclaration->getType(m_currentContract); if (!m_type) BOOST_THROW_EXCEPTION(createTypeError("Declaration referenced before type could be determined.")); } Declaration const& Identifier::getReferencedDeclaration() const { solAssert(!!m_referencedDeclaration, "Identifier not resolved."); return *m_referencedDeclaration; } void Identifier::overloadResolution(TypePointers const& _argumentTypes) { solAssert(!m_referencedDeclaration, "Referenced declaration should be null before overload resolution."); solAssert(!m_overloadedDeclarations.empty(), "No candidates for overload resolution found."); std::vector possibles; if (m_overloadedDeclarations.size() == 1) m_referencedDeclaration = *m_overloadedDeclarations.begin(); for (Declaration const* declaration: m_overloadedDeclarations) { TypePointer const& function = declaration->getType(); auto const* functionType = dynamic_cast(function.get()); if (functionType && functionType->canTakeArguments(_argumentTypes)) possibles.push_back(declaration); } if (possibles.size() == 1) m_referencedDeclaration = possibles.front(); else if (possibles.empty()) BOOST_THROW_EXCEPTION(createTypeError("No matching declaration found after argument-dependent lookup.")); else BOOST_THROW_EXCEPTION(createTypeError("No unique declaration found after argument-dependent lookup.")); } void ElementaryTypeNameExpression::checkTypeRequirements(TypePointers const*) { m_type = make_shared(Type::fromElementaryTypeName(m_typeToken)); } void Literal::checkTypeRequirements(TypePointers const*) { m_type = Type::forLiteral(*this); if (!m_type) BOOST_THROW_EXCEPTION(createTypeError("Invalid literal value.")); } } }