#ifndef CUDA_HELPER_H #define CUDA_HELPER_H #include #include #ifdef __INTELLISENSE__ /* reduce vstudio warnings (__byteperm, blockIdx...) */ #include #include #define __launch_bounds__(max_tpb, min_blocks) #define asm("a" : "=l"(result) : "l"(a)) #define __CUDA_ARCH__ 520 // highlight shuffle code by default. uint32_t __byte_perm(uint32_t x, uint32_t y, uint32_t z); uint32_t __shfl(uint32_t x, uint32_t y, uint32_t z); uint32_t atomicExch(uint32_t *x, uint32_t y); uint32_t atomicAdd(uint32_t *x, uint32_t y); void __syncthreads(void); void __threadfence(void); void __threadfence_block(void); uint32_t __byte_perm(uint32_t x, uint32_t y, uint32_t z); uint32_t __shfl(uint32_t x, uint32_t y, uint32_t z); uint32_t atomicExch(uint32_t *x, uint32_t y); uint32_t atomicAdd(uint32_t *x, uint32_t y); void __syncthreads(void); void __threadfence(void); #endif #include #ifndef MAX_GPUS #define MAX_GPUS 32 #endif extern "C" int device_map[MAX_GPUS]; extern "C" long device_sm[MAX_GPUS]; extern cudaStream_t gpustream[MAX_GPUS]; // common functions extern void cuda_check_cpu_init(int thr_id, uint32_t threads); extern void cuda_check_cpu_setTarget(const void *ptarget); extern void cuda_check_cpu_setTarget_mod(const void *ptarget, const void *ptarget2); extern uint32_t cuda_check_hash(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_inputHash); extern uint32_t cuda_check_hash_suppl(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_inputHash, uint32_t foundnonce); extern void cudaReportHardwareFailure(int thr_id, cudaError_t error, const char* func); #ifndef __CUDA_ARCH__ // define blockDim and threadIdx for host extern const dim3 blockDim; extern const uint3 threadIdx; #endif extern cudaError_t MyStreamSynchronize(cudaStream_t stream, int situation, int thr_id); #ifndef SPH_C32 #define SPH_C32(x) ((x ## U)) // #define SPH_C32(x) ((uint32_t)(x ## U)) #endif #ifndef SPH_C64 #define SPH_C64(x) ((x ## ULL)) // #define SPH_C64(x) ((uint64_t)(x ## ULL)) #endif #ifndef SPH_T32 #define SPH_T32(x) (x) // #define SPH_T32(x) ((x) & SPH_C32(0xFFFFFFFF)) #endif #ifndef SPH_T64 #define SPH_T64(x) (x) // #define SPH_T64(x) ((x) & SPH_C64(0xFFFFFFFFFFFFFFFF)) #endif #define ROTL32c(x, n) ((x) << (n)) | ((x) >> (32 - (n))) #if __CUDA_ARCH__ < 320 // Kepler (Compute 3.0) #define ROTL32(x, n) ((x) << (n)) | ((x) >> (32 - (n))) #else // Kepler (Compute 3.5, 5.0) __device__ __forceinline__ uint32_t ROTL32(const uint32_t x, const uint32_t n) { return(__funnelshift_l((x), (x), (n))); } #endif #if __CUDA_ARCH__ < 320 // Kepler (Compute 3.0) #define ROTR32(x, n) (((x) >> (n)) | ((x) << (32 - (n)))) #else __device__ __forceinline__ uint32_t ROTR32(const uint32_t x, const uint32_t n) { return(__funnelshift_r((x), (x), (n))); } #endif __device__ __forceinline__ uint64_t MAKE_ULONGLONG(uint32_t LO, uint32_t HI) { uint64_t result; asm("mov.b64 %0,{%1,%2}; \n\t" : "=l"(result) : "r"(LO), "r"(HI)); return result; } __device__ __forceinline__ uint64_t REPLACE_HIWORD(const uint64_t x, const uint32_t y) { uint64_t result; asm( "{\n\t" ".reg .u32 t,t2; \n\t" "mov.b64 {t2,t},%1; \n\t" "mov.b64 %0,{t2,%2}; \n\t" "}" : "=l"(result) : "l"(x), "r"(y) ); return result; } __device__ __forceinline__ uint64_t REPLACE_LOWORD(const uint64_t x, const uint32_t y) { uint64_t result; asm( "{\n\t" ".reg .u32 t,t2; \n\t" "mov.b64 {t2,t},%1; \n\t" "mov.b64 %0,{%2,t}; \n\t" "}" : "=l"(result) : "l"(x) , "r"(y) ); return result; } // Endian Drehung für 32 Bit Typen #ifdef __CUDA_ARCH__ __device__ __forceinline__ uint32_t cuda_swab32(const uint32_t x) { /* device */ return __byte_perm(x, x, 0x0123); } #else /* host */ #define cuda_swab32(x) \ ((((x) << 24) & 0xff000000u) | (((x) << 8) & 0x00ff0000u) | \ (((x) >> 8) & 0x0000ff00u) | (((x) >> 24) & 0x000000ffu)) #endif static __device__ __forceinline__ uint32_t _HIWORD(const uint64_t x) { uint32_t result; asm( "{\n\t" ".reg .u32 xl; \n\t" "mov.b64 {xl,%0},%1; \n\t" "}" : "=r"(result) : "l"(x) ); return result; } static __device__ __forceinline__ uint32_t _LOWORD(const uint64_t x) { uint32_t result; asm( "{\n\t" ".reg .u32 xh; \n\t" "mov.b64 {%0,xh},%1; \n\t" "}" : "=r"(result) : "l"(x) ); return result; } // Input: 77665544 33221100 // Output: 00112233 44556677 #ifdef __CUDA_ARCH__ __device__ __forceinline__ uint64_t cuda_swab64(const uint64_t x) { uint64_t result; uint2 t; asm("mov.b64 {%0,%1},%2; \n\t" : "=r"(t.x), "=r"(t.y) : "l"(x)); t.x=__byte_perm(t.x, 0, 0x0123); t.y=__byte_perm(t.y, 0, 0x0123); asm("mov.b64 %0,{%1,%2}; \n\t" : "=l"(result) : "r"(t.y), "r"(t.x)); return result; } #else /* host */ #define cuda_swab64(x) \ ((uint64_t)((((uint64_t)(x) & 0xff00000000000000ULL) >> 56) | \ (((uint64_t)(x) & 0x00ff000000000000ULL) >> 40) | \ (((uint64_t)(x) & 0x0000ff0000000000ULL) >> 24) | \ (((uint64_t)(x) & 0x000000ff00000000ULL) >> 8) | \ (((uint64_t)(x) & 0x00000000ff000000ULL) << 8) | \ (((uint64_t)(x) & 0x0000000000ff0000ULL) << 24) | \ (((uint64_t)(x) & 0x000000000000ff00ULL) << 40) | \ (((uint64_t)(x) & 0x00000000000000ffULL) << 56))) #endif /*********************************************************************/ // Macros to catch CUDA errors in CUDA runtime calls #define CUDA_SAFE_CALL(call) \ do { \ cudaError_t err = call; \ if (cudaSuccess != err) { \ fprintf(stderr, "Cuda error in func '%s' at line %i : %s.\n", \ __FUNCTION__, __LINE__, cudaGetErrorString(err) ); \ exit(EXIT_FAILURE); \ } \ } while (0) #define CUDA_CALL_OR_RET(call) do { \ cudaError_t err = call; \ if (cudaSuccess != err) { \ cudaReportHardwareFailure(thr_id, err, __FUNCTION__); \ return; \ } \ } while (0) #define CUDA_CALL_OR_RET_X(call, ret) do { \ cudaError_t err = call; \ if (cudaSuccess != err) { \ cudaReportHardwareFailure(thr_id, err, __FUNCTION__); \ return ret; \ } \ } while (0) /*********************************************************************/ #ifdef _WIN64 #define USE_XOR_ASM_OPTS 0 #else #define USE_XOR_ASM_OPTS 1 #endif #if USE_XOR_ASM_OPTS // device asm for whirpool __device__ __forceinline__ uint64_t xor1(const uint64_t a, const uint64_t b) { uint64_t result; asm("xor.b64 %0, %1, %2;" : "=l"(result) : "l"(a), "l"(b)); return result; } #else #define xor1(a,b) (a ^ b) #endif /* #if USE_XOR_ASM_OPTS // device asm for whirpool __device__ __forceinline__ uint64_t xor3(const uint64_t a, const uint64_t b, const uint64_t c) { uint64_t result; asm("xor.b64 %0, %2, %3;\n\t" "xor.b64 %0, %0, %1;\n\t" //output : input registers : "=l"(result) : "l"(a), "l"(b), "l"(c)); return result; } #else #define xor3(a,b,c) (a ^ b ^ c) #endif */ #if USE_XOR_ASM_OPTS // device asm for whirpool __device__ __forceinline__ uint64_t xor8(const uint64_t a, const uint64_t b, const uint64_t c, const uint64_t d, const uint64_t e, const uint64_t f, const uint64_t g, const uint64_t h) { uint64_t result; asm("xor.b64 %0, %1, %2;" : "=l"(result) : "l"(g) ,"l"(h)); asm("xor.b64 %0, %0, %1;" : "+l"(result) : "l"(f)); asm("xor.b64 %0, %0, %1;" : "+l"(result) : "l"(e)); asm("xor.b64 %0, %0, %1;" : "+l"(result) : "l"(d)); asm("xor.b64 %0, %0, %1;" : "+l"(result) : "l"(c)); asm("xor.b64 %0, %0, %1;" : "+l"(result) : "l"(b)); asm("xor.b64 %0, %0, %1;" : "+l"(result) : "l"(a)); return result; } #else #define xor8(a,b,c,d,e,f,g,h) ((a^b)^(c^d)^(e^f)^(g^h)) #endif // device asm for x17 __device__ __forceinline__ uint64_t xandx(const uint64_t a, const uint64_t b, const uint64_t c) { uint64_t result; asm("{\n\t" ".reg .u64 n;\n\t" "xor.b64 %0, %2, %3;\n\t" "and.b64 n, %0, %1;\n\t" "xor.b64 %0, n, %3;" "}\n" : "=l"(result) : "l"(a), "l"(b), "l"(c)); return result; } // device asm for x17 __device__ __forceinline__ uint64_t andor(uint64_t a, uint64_t b, uint64_t c) { uint64_t result; asm("{\n\t" ".reg .u64 m,n;\n\t" "and.b64 m, %1, %2;\n\t" " or.b64 n, %1, %2;\n\t" "and.b64 %0, n, %3;\n\t" " or.b64 %0, %0, m ;\n\t" "}\n" : "=l"(result) : "l"(a), "l"(b), "l"(c)); return result; } // device asm for x17 __device__ __forceinline__ uint64_t shr_t64(uint64_t x, uint32_t n) { uint64_t result; asm("shr.b64 %0,%1,%2;\n\t" : "=l"(result) : "l"(x), "r"(n)); return result; } // device asm for ? __device__ __forceinline__ uint64_t shl_t64(uint64_t x, uint32_t n) { uint64_t result; asm("shl.b64 %0,%1,%2;\n\t" : "=l"(result) : "l"(x), "r"(n)); return result; } #ifndef USE_ROT_ASM_OPT #define USE_ROT_ASM_OPT 2 #endif // 64-bit ROTATE RIGHT #if __CUDA_ARCH__ >= 320 && USE_ROT_ASM_OPT == 1 /* complicated sm >= 3.5 one (with Funnel Shifter beschleunigt), to bench */ __device__ __forceinline__ uint64_t ROTR64(const uint64_t value, const int offset) { uint2 result; if(offset < 32) { asm("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(result.x) : "r"(__double2loint(__longlong_as_double(value))), "r"(__double2hiint(__longlong_as_double(value))), "r"(offset)); asm("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(result.y) : "r"(__double2hiint(__longlong_as_double(value))), "r"(__double2loint(__longlong_as_double(value))), "r"(offset)); } else { asm("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(result.x) : "r"(__double2hiint(__longlong_as_double(value))), "r"(__double2loint(__longlong_as_double(value))), "r"(offset)); asm("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(result.y) : "r"(__double2loint(__longlong_as_double(value))), "r"(__double2hiint(__longlong_as_double(value))), "r"(offset)); } return __double_as_longlong(__hiloint2double(result.y, result.x)); } #elif __CUDA_ARCH__ >= 120 && USE_ROT_ASM_OPT == 2 __device__ __forceinline__ uint64_t ROTR64(const uint64_t x, const int offset) { uint64_t result; asm("{\n\t" ".reg .b64 lhs;\n\t" ".reg .u32 roff;\n\t" "shr.b64 lhs, %1, %2;\n\t" "sub.u32 roff, 64, %2;\n\t" "shl.b64 %0, %1, roff;\n\t" "add.u64 %0, %0, lhs;\n\t" "}\n" : "=l"(result) : "l"(x), "r"(offset)); return result; } #else /* host */ #define ROTR64(x, n) (((x) >> (n)) | ((x) << (64 - (n)))) #endif // 64-bit ROTATE LEFT #if __CUDA_ARCH__ >= 320 && USE_ROT_ASM_OPT == 1 __device__ __forceinline__ uint64_t ROTL64(const uint64_t value, const int offset) { uint2 result; if(offset >= 32) { asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.x) : "r"(__double2loint(__longlong_as_double(value))), "r"(__double2hiint(__longlong_as_double(value))), "r"(offset)); asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.y) : "r"(__double2hiint(__longlong_as_double(value))), "r"(__double2loint(__longlong_as_double(value))), "r"(offset)); } else { asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.x) : "r"(__double2hiint(__longlong_as_double(value))), "r"(__double2loint(__longlong_as_double(value))), "r"(offset)); asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.y) : "r"(__double2loint(__longlong_as_double(value))), "r"(__double2hiint(__longlong_as_double(value))), "r"(offset)); } return __double_as_longlong(__hiloint2double(result.y, result.x)); } #elif __CUDA_ARCH__ >= 120 && USE_ROT_ASM_OPT == 2 __device__ __forceinline__ uint64_t ROTL64(const uint64_t x, const int offset) { uint64_t result; asm("{\n\t" ".reg .b64 lhs;\n\t" ".reg .u32 roff;\n\t" "shl.b64 lhs, %1, %2;\n\t" "sub.u32 roff, 64, %2;\n\t" "shr.b64 %0, %1, roff;\n\t" "add.u64 %0, lhs, %0;\n\t" "}\n" : "=l"(result) : "l"(x), "r"(offset)); return result; } #elif __CUDA_ARCH__ >= 320 && USE_ROT_ASM_OPT == 3 __device__ uint64_t ROTL64(const uint64_t x, const int offset) { uint64_t res; asm("{\n\t" ".reg .u32 tl,th,vl,vh;\n\t" ".reg .pred p;\n\t" "mov.b64 {tl,th}, %1;\n\t" "shf.l.wrap.b32 vl, tl, th, %2;\n\t" "shf.l.wrap.b32 vh, th, tl, %2;\n\t" "setp.lt.u32 p, %2, 32;\n\t" "@!p mov.b64 %0, {vl,vh};\n\t" "@p mov.b64 %0, {vh,vl};\n\t" "}" : "=l"(res) : "l"(x) , "r"(offset) ); return res; } #else /* host */ #define ROTL64(x, n) (((x) << (n)) | ((x) >> (64 - (n)))) #endif __device__ __forceinline__ uint64_t SWAPDWORDS(uint64_t value) { #if __CUDA_ARCH__ >= 320 uint2 temp; asm("mov.b64 {%0, %1}, %2; ": "=r"(temp.x), "=r"(temp.y) : "l"(value)); asm("mov.b64 %0, {%1, %2}; ": "=l"(value) : "r"(temp.y), "r"(temp.x)); return value; #else return ROTL64(value, 32); #endif } /* lyra2 - int2 operators */ __device__ __forceinline__ void LOHI(uint32_t &lo, uint32_t &hi, uint64_t x) { asm("mov.b64 {%0,%1},%2; \n\t" : "=r"(lo), "=r"(hi) : "l"(x)); } __device__ __forceinline__ uint64_t devectorize(uint2 x) { uint64_t result; asm("mov.b64 %0,{%1,%2}; \n\t" : "=l"(result) : "r"(x.x), "r"(x.y)); return result; } __device__ __forceinline__ uint2 vectorize(const uint64_t x) { uint2 result; asm("mov.b64 {%0,%1},%2; \n\t" : "=r"(result.x), "=r"(result.y) : "l"(x)); return result; } __device__ __forceinline__ void devectorize2(uint4 inn, uint2 &x, uint2 &y) { x.x = inn.x; x.y = inn.y; y.x = inn.z; y.y = inn.w; } __device__ __forceinline__ uint4 vectorize2(uint2 x, uint2 y) { uint4 result; result.x = x.x; result.y = x.y; result.z = y.x; result.w = y.y; return result; } __device__ __forceinline__ uint4 vectorize2(uint2 x) { uint4 result; result.x = x.x; result.y = x.y; result.z = x.x; result.w = x.y; return result; } __device__ __forceinline__ uint4 vectorize4(uint64_t x, uint64_t y) { uint4 result; asm("mov.b64 {%0,%1},%2; \n\t" : "=r"(result.x), "=r"(result.y) : "l"(x)); asm("mov.b64 {%0,%1},%2; \n\t" : "=r"(result.z), "=r"(result.w) : "l"(y)); return result; } __device__ __forceinline__ void devectorize4(uint4 inn, uint64_t &x, uint64_t &y) { asm("mov.b64 %0,{%1,%2}; \n\t" : "=l"(x) : "r"(inn.x), "r"(inn.y)); asm("mov.b64 %0,{%1,%2}; \n\t" : "=l"(y) : "r"(inn.z), "r"(inn.w)); } static __device__ __forceinline__ uint2 vectorizelow(uint32_t v) { uint2 result; result.x = v; result.y = 0; return result; } static __device__ __forceinline__ uint2 vectorizehigh(uint32_t v) { uint2 result; result.x = 0; result.y = v; return result; } static __device__ __forceinline__ uint2 operator^ (uint2 a, uint32_t b) { return make_uint2(a.x^ b, a.y); } static __device__ __forceinline__ uint2 operator^ (uint2 a, uint2 b) { return make_uint2(a.x ^ b.x, a.y ^ b.y); } static __device__ __forceinline__ uint2 operator& (uint2 a, uint2 b) { return make_uint2(a.x & b.x, a.y & b.y); } static __device__ __forceinline__ uint2 operator| (uint2 a, uint2 b) { return make_uint2(a.x | b.x, a.y | b.y); } static __device__ __forceinline__ uint2 operator~ (uint2 a) { return make_uint2(~a.x, ~a.y); } static __device__ __forceinline__ void operator^= (uint2 &a, uint2 b) { a = a ^ b; } static __device__ __forceinline__ uint2 operator+ (uint2 a, uint2 b) { uint2 result; asm("{\n\t" "add.cc.u32 %0,%2,%4; \n\t" "addc.u32 %1,%3,%5; \n\t" "}\n\t" : "=r"(result.x), "=r"(result.y) : "r"(a.x), "r"(a.y), "r"(b.x), "r"(b.y)); return result; } static __device__ __forceinline__ uint2 operator+ (uint2 a, uint32_t b) { uint2 result; asm("{\n\t" "add.cc.u32 %0,%2,%4; \n\t" "addc.u32 %1,%3,%5; \n\t" "}\n\t" : "=r"(result.x), "=r"(result.y) : "r"(a.x), "r"(a.y), "r"(b), "r"(0)); return result; } static __device__ __forceinline__ uint2 operator- (uint2 a, uint32_t b) { uint2 result; asm("{\n\t" "sub.cc.u32 %0,%2,%4; \n\t" "subc.u32 %1,%3,%5; \n\t" "}\n\t" : "=r"(result.x), "=r"(result.y) : "r"(a.x), "r"(a.y), "r"(b), "r"(0)); return result; } static __device__ __forceinline__ uint2 operator- (uint2 a, uint2 b) { uint2 result; asm("{\n\t" "sub.cc.u32 %0,%2,%4; \n\t" "subc.u32 %1,%3,%5; \n\t" "}\n\t" : "=r"(result.x), "=r"(result.y) : "r"(a.x), "r"(a.y), "r"(b.x), "r"(b.y)); return result; } static __device__ __forceinline__ uint4 operator^ (uint4 a, uint4 b) { return make_uint4(a.x ^ b.x, a.y ^ b.y, a.z ^ b.z, a.w ^ b.w); } static __device__ __forceinline__ uint4 operator& (uint4 a, uint4 b) { return make_uint4(a.x & b.x, a.y & b.y, a.z & b.z, a.w & b.w); } static __device__ __forceinline__ uint4 operator| (uint4 a, uint4 b) { return make_uint4(a.x | b.x, a.y | b.y, a.z | b.z, a.w | b.w); } static __device__ __forceinline__ uint4 operator~ (uint4 a) { return make_uint4(~a.x, ~a.y, ~a.z, ~a.w); } static __device__ __forceinline__ void operator^= (uint4 &a, uint4 b) { a = a ^ b; } static __device__ __forceinline__ uint4 operator^ (uint4 a, uint2 b) { return make_uint4(a.x ^ b.x, a.y ^ b.y, a.z ^ b.x, a.w ^ b.y); } static __device__ __forceinline__ void operator+= (uint2 &a, uint2 b) { a = a + b; } /** * basic multiplication between 64bit no carry outside that range (ie mul.lo.b64(a*b)) * (what does uint64 "*" operator) */ static __device__ __forceinline__ uint2 operator* (uint2 a, uint2 b) { uint2 result; asm("{\n\t" "mul.lo.u32 %0,%2,%4; \n\t" "mul.hi.u32 %1,%2,%4; \n\t" "mad.lo.cc.u32 %1,%3,%4,%1; \n\t" "madc.lo.u32 %1,%3,%5,%1; \n\t" "}\n\t" : "=r"(result.x), "=r"(result.y) : "r"(a.x), "r"(a.y), "r"(b.x), "r"(b.y)); return result; } // uint2 method #if __CUDA_ARCH__ >= 350 __device__ __inline__ uint2 ROR2(const uint2 a, const int offset) { uint2 result; if (offset < 32) { asm("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(result.x) : "r"(a.x), "r"(a.y), "r"(offset)); asm("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(result.y) : "r"(a.y), "r"(a.x), "r"(offset)); } else { asm("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(result.x) : "r"(a.y), "r"(a.x), "r"(offset)); asm("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(result.y) : "r"(a.x), "r"(a.y), "r"(offset)); } return result; } #else __device__ __inline__ uint2 ROR2(const uint2 v, const int n) { uint2 result; if (n <= 32) { result.y = ((v.y >> (n)) | (v.x << (32 - n))); result.x = ((v.x >> (n)) | (v.y << (32 - n))); } else { result.y = ((v.x >> (n - 32)) | (v.y << (64 - n))); result.x = ((v.y >> (n - 32)) | (v.x << (64 - n))); } return result; } #endif __device__ __inline__ uint32_t ROL8(const uint32_t x) { return __byte_perm(x, x, 0x2103); } __device__ __inline__ uint32_t ROL16(const uint32_t x) { return __byte_perm(x, x, 0x1032); } __device__ __inline__ uint32_t ROL24(const uint32_t x) { return __byte_perm(x, x, 0x0321); } __device__ __inline__ uint2 ROR8(const uint2 a) { uint2 result; result.x = __byte_perm(a.y, a.x, 0x0765); result.y = __byte_perm(a.y, a.x, 0x4321); return result; } __device__ __inline__ uint2 ROR16(const uint2 a) { uint2 result; result.x = __byte_perm(a.y, a.x, 0x1076); result.y = __byte_perm(a.y, a.x, 0x5432); return result; } __device__ __inline__ uint2 ROR24(const uint2 a) { uint2 result; result.x = __byte_perm(a.y, a.x, 0x2107); result.y = __byte_perm(a.y, a.x, 0x6543); return result; } __device__ __inline__ uint2 ROL8(const uint2 a) { uint2 result; result.x = __byte_perm(a.y, a.x, 0x6543); result.y = __byte_perm(a.y, a.x, 0x2107); return result; } __device__ __inline__ uint2 ROL16(const uint2 a) { uint2 result; result.x = __byte_perm(a.y, a.x, 0x5432); result.y = __byte_perm(a.y, a.x, 0x1076); return result; } __device__ __inline__ uint2 ROL24(const uint2 a) { uint2 result; result.x = __byte_perm(a.y, a.x, 0x4321); result.y = __byte_perm(a.y, a.x, 0x0765); return result; } #if __CUDA_ARCH__ >= 350 __inline__ __device__ uint2 ROL2(const uint2 a, const int offset) { uint2 result; if (offset >= 32) { asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.x) : "r"(a.x), "r"(a.y), "r"(offset)); asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.y) : "r"(a.y), "r"(a.x), "r"(offset)); } else { asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.x) : "r"(a.y), "r"(a.x), "r"(offset)); asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.y) : "r"(a.x), "r"(a.y), "r"(offset)); } return result; } #else __inline__ __device__ uint2 ROL2(const uint2 v, const int n) { uint2 result; if (n <= 32) { result.y = ((v.y << (n)) | (v.x >> (32 - n))); result.x = ((v.x << (n)) | (v.y >> (32 - n))); } else { result.y = ((v.x << (n - 32)) | (v.y >> (64 - n))); result.x = ((v.y << (n - 32)) | (v.x >> (64 - n))); } return result; } #endif __device__ __forceinline__ uint64_t ROTR16(uint64_t x) { #if __CUDA_ARCH__ > 500 short4 temp; asm("mov.b64 { %0, %1, %2, %3 }, %4; ": "=h"(temp.x), "=h"(temp.y), "=h"(temp.z), "=h"(temp.w) : "l"(x)); asm("mov.b64 %0, {%1, %2, %3 , %4}; ": "=l"(x) : "h"(temp.y), "h"(temp.z), "h"(temp.w), "h"(temp.x)); return x; #else return ROTR64(x, 16); #endif } __device__ __forceinline__ uint64_t ROTL16(uint64_t x) { #if __CUDA_ARCH__ > 500 short4 temp; asm("mov.b64 { %0, %1, %2, %3 }, %4; ": "=h"(temp.x), "=h"(temp.y), "=h"(temp.z), "=h"(temp.w) : "l"(x)); asm("mov.b64 %0, {%1, %2, %3 , %4}; ": "=l"(x) : "h"(temp.w), "h"(temp.x), "h"(temp.y), "h"(temp.z)); return x; #else return ROTL64(x, 16); #endif } __device__ __forceinline__ uint2 SWAPINT2(uint2 x) { return(make_uint2(x.y, x.x)); } __device__ __forceinline__ bool cuda_hashisbelowtarget(const uint32_t *const __restrict__ hash, const uint32_t *const __restrict__ target) { if (hash[7] > target[7]) return false; if (hash[7] < target[7]) return true; if (hash[6] > target[6]) return false; if (hash[6] < target[6]) return true; if (hash[5] > target[5]) return false; if (hash[5] < target[5]) return true; if (hash[4] > target[4]) return false; if (hash[4] < target[4]) return true; if (hash[3] > target[3]) return false; if (hash[3] < target[3]) return true; if (hash[2] > target[2]) return false; if (hash[2] < target[2]) return true; if (hash[1] > target[1]) return false; if (hash[1] < target[1]) return true; if (hash[0] > target[0]) return false; return true; } __device__ __forceinline__ uint2 SWAPDWORDS2(uint2 value) { return make_uint2(value.y, value.x); } __device__ __forceinline__ uint4 SWAPDWORDS2(uint4 value) { return make_uint4(value.y, value.x, value.w ,value.z); } static __forceinline__ __device__ uint2 SHL2(uint2 a, int offset) { #if __CUDA_ARCH__ > 300 uint2 result; if (offset<32) { asm("{\n\t" "shf.l.clamp.b32 %1,%2,%3,%4; \n\t" "shl.b32 %0,%2,%4; \n\t" "}\n\t" : "=r"(result.x), "=r"(result.y) : "r"(a.x), "r"(a.y), "r"(offset)); } else { asm("{\n\t" "shf.l.clamp.b32 %1,%2,%3,%4; \n\t" "shl.b32 %0,%2,%4; \n\t" "}\n\t" : "=r"(result.x), "=r"(result.y) : "r"(a.y), "r"(a.x), "r"(offset)); } return result; #else if (offset<=32) { a.y = (a.y << offset) | (a.x >> (32 - offset)); a.x = (a.x << offset); } else { a.y = (a.x << (offset-32)); a.x = 0; } return a; #endif } static __forceinline__ __device__ uint2 SHR2(uint2 a, int offset) { #if __CUDA_ARCH__ > 300 uint2 result; if (offset<32) { asm("{\n\t" "shf.r.clamp.b32 %0,%2,%3,%4; \n\t" "shr.b32 %1,%3,%4; \n\t" "}\n\t" : "=r"(result.x), "=r"(result.y) : "r"(a.x), "r"(a.y), "r"(offset)); } else { asm("{\n\t" "shf.l.clamp.b32 %0,%2,%3,%4; \n\t" "shl.b32 %1,%3,%4; \n\t" "}\n\t" : "=r"(result.x), "=r"(result.y) : "r"(a.y), "r"(a.x), "r"(offset)); } return result; #else if (offset<=32) { a.x = (a.x >> offset) | (a.y << (32 - offset)); a.y = (a.y >> offset); } else { a.x = (a.y >> (offset - 32)); a.y = 0; } return a; #endif } static __device__ __forceinline__ uint64_t devectorizeswap(uint2 v) { return MAKE_ULONGLONG(cuda_swab32(v.y), cuda_swab32(v.x)); } static __device__ __forceinline__ uint2 vectorizeswap(uint64_t v) { uint2 result; LOHI(result.y, result.x, v); result.x = cuda_swab32(result.x); result.y = cuda_swab32(result.y); return result; } __device__ __forceinline__ uint32_t devectorize16(ushort2 x) { uint32_t result; asm("mov.b32 %0,{%1,%2}; \n\t" : "=r"(result) : "h"(x.x) , "h"(x.y)); return result; } __device__ __forceinline__ ushort2 vectorize16(uint32_t x) { ushort2 result; asm("mov.b32 {%0,%1},%2; \n\t" : "=h"(result.x), "=h"(result.y) : "r"(x)); return result; } static __device__ __forceinline__ uint4 mul4(uint4 a) { uint4 result; asm("{\n\t" "mul.lo.u32 %0,%4,%5; \n\t" "mul.hi.u32 %1,%4,%5; \n\t" "mul.lo.u32 %2,%6,%7; \n\t" "mul.hi.u32 %3,%6,%7; \n\t" "}\n\t" : "=r"(result.x), "=r"(result.y), "=r"(result.z), "=r"(result.w) : "r"(a.x), "r"(a.y), "r"(a.z), "r"(a.w)); return result; } static __device__ __forceinline__ uint4 add4(uint4 a, uint4 b) { uint4 result; asm("{\n\t" "add.cc.u32 %0,%4,%8; \n\t" "addc.u32 %1,%5,%9; \n\t" "add.cc.u32 %2,%6,%10; \n\t" "addc.u32 %3,%7,%11; \n\t" "}\n\t" : "=r"(result.x), "=r"(result.y), "=r"(result.z), "=r"(result.w) : "r"(a.x), "r"(a.y), "r"(a.z), "r"(a.w), "r"(b.x), "r"(b.y), "r"(b.z), "r"(b.w)); return result; } static __device__ __forceinline__ uint4 madd4(uint4 a, uint4 b) { uint4 result; asm("{\n\t" "mad.lo.cc.u32 %0,%4,%5,%8; \n\t" "madc.hi.u32 %1,%4,%5,%9; \n\t" "mad.lo.cc.u32 %2,%6,%7,%10; \n\t" "madc.hi.u32 %3,%6,%7,%11; \n\t" "}\n\t" : "=r"(result.x), "=r"(result.y), "=r"(result.z), "=r"(result.w) : "r"(a.x), "r"(a.y), "r"(a.z), "r"(a.w), "r"(b.x), "r"(b.y), "r"(b.z), "r"(b.w)); return result; } static __device__ __forceinline__ ulonglong2 madd4long(ulonglong2 a, ulonglong2 b) { ulonglong2 result; asm("{\n\t" ".reg .u32 a0,a1,a2,a3,b0,b1,b2,b3;\n\t" "mov.b64 {a0,a1}, %2;\n\t" "mov.b64 {a2,a3}, %3;\n\t" "mov.b64 {b0,b1}, %4;\n\t" "mov.b64 {b2,b3}, %5;\n\t" "mad.lo.cc.u32 b0,a0,a1,b0; \n\t" "madc.hi.u32 b1,a0,a1,b1; \n\t" "mad.lo.cc.u32 b2,a2,a3,b2; \n\t" "madc.hi.u32 b3,a2,a3,b3; \n\t" "mov.b64 %0, {b0,b1};\n\t" "mov.b64 %1, {b2,b3};\n\t" "}\n\t" : "=l"(result.x), "=l"(result.y) : "l"(a.x), "l"(a.y), "l"(b.x), "l"(b.y)); return result; } static __device__ __forceinline__ void madd4long2(ulonglong2 &a, ulonglong2 b) { asm("{\n\t" ".reg .u32 a0,a1,a2,a3,b0,b1,b2,b3;\n\t" "mov.b64 {a0,a1}, %0;\n\t" "mov.b64 {a2,a3}, %1;\n\t" "mov.b64 {b0,b1}, %2;\n\t" "mov.b64 {b2,b3}, %3;\n\t" "mad.lo.cc.u32 b0,a0,a1,b0; \n\t" "madc.hi.u32 b1,a0,a1,b1; \n\t" "mad.lo.cc.u32 b2,a2,a3,b2; \n\t" "madc.hi.u32 b3,a2,a3,b3; \n\t" "mov.b64 %0, {b0,b1};\n\t" "mov.b64 %1, {b2,b3};\n\t" "}\n\t" : "+l"(a.x), "+l"(a.y) : "l"(b.x), "l"(b.y)); } __device__ __forceinline__ uint32_t xor3b(uint32_t a, uint32_t b, uint32_t c) { uint32_t result; asm("{ .reg .u32 t1;\n\t" "xor.b32 t1, %2, %3;\n\t" "xor.b32 %0, %1, t1;\n\t" "}" : "=r"(result) : "r"(a), "r"(b), "r"(c)); return result; } __device__ __forceinline__ uint32_t shr_t32(uint32_t x, uint32_t n) { uint32_t result; asm("shr.b32 %0,%1,%2;" : "=r"(result) : "r"(x), "r"(n)); return result; } __device__ __forceinline__ uint32_t shl_t32(uint32_t x, uint32_t n) { uint32_t result; asm("shl.b32 %0,%1,%2;" : "=r"(result) : "r"(x), "r"(n)); return result; } // device asm 32 for pluck __device__ __forceinline__ uint32_t andor32(uint32_t a, uint32_t b, uint32_t c) { uint32_t result; asm("{ .reg .u32 m,n,o;\n\t" "and.b32 m, %1, %2;\n\t" " or.b32 n, %1, %2;\n\t" "and.b32 o, n, %3;\n\t" " or.b32 %0, m, o ;\n\t" "}\n\t" : "=r"(result) : "r"(a), "r"(b), "r"(c)); return result; } __device__ __forceinline__ uint32_t bfe(uint32_t x, uint32_t bit, uint32_t numBits) { uint32_t ret; asm("bfe.u32 %0, %1, %2, %3;" : "=r"(ret) : "r"(x), "r"(bit), "r"(numBits)); return ret; } __device__ __forceinline__ uint32_t bfi(uint32_t x, uint32_t a, uint32_t bit, uint32_t numBits) { uint32_t ret; asm("bfi.b32 %0, %1, %2, %3,%4;" : "=r"(ret) : "r"(x), "r"(a), "r"(bit), "r"(numBits)); return ret; } #endif // #ifndef CUDA_HELPER_H