/*
This file is part of cpp-ethereum.
cpp-ethereum is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
cpp-ethereum is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with cpp-ethereum. If not, see .
*/
/** @file Instruction.cpp
* @author Gav Wood
* @date 2014
*/
#include "Instruction.h"
#include
#include "Common.h"
using namespace std;
using namespace eth;
static string readQuoted(char const*& o_d, char const* _e)
{
string ret;
bool escaped = 0;
for (++o_d; o_d != _e && (escaped || *o_d != '"'); ++o_d)
if (!escaped && *o_d == '\\')
escaped = true;
else
ret.push_back(*o_d);
if (o_d != _e)
++o_d; // skip last "
return ret;
}
static u256 readNumeric(string _v, bool _quiet)
{
u256 x = 1;
for (auto const& i: units())
if (boost::algorithm::ends_with(_v, i.second))
{
_v = _v.substr(0, _v.size() - i.second.size());
x = i.first;
break;
}
try
{
return x * u256(_v);
}
catch (...)
{
if (!_quiet)
cwarn << "Invalid numeric" << _v;
}
return 0;
}
u256s eth::assemble(std::string const& _code, bool _quiet)
{
u256s ret;
map known;
map req;
char const* d = _code.data();
char const* e = _code.data() + _code.size();
while (d != e)
{
// skip to next token
for (; d != e && !isalnum(*d) && *d != '_' && *d != ':' && *d != '"'; ++d) {}
if (d == e)
break;
if (*d == '"')
{
string s = readQuoted(d, e);
if (s.size() > 32)
{
if (!_quiet)
cwarn << "String literal > 32 characters. Cropping.";
s.resize(32);
}
h256 valHash;
memcpy(valHash.data(), s.data(), s.size());
memset(valHash.data() + s.size(), 0, 32 - s.size());
ret.push_back((u256)valHash);
}
else
{
char const* s = d;
for (; d != e && (isalnum(*d) || *d == '_' || *d == ':' || *d == '"'); ++d) {}
string t = string(s, d - s);
if (isdigit(t[0]))
ret.push_back(readNumeric(t, _quiet));
else if (t.back() == ':')
known[t.substr(0, t.size() - 1)] = (unsigned)ret.size();
else
{
auto it = c_instructions.find(boost::algorithm::to_upper_copy(t));
if (it != c_instructions.end())
ret.push_back((u256)it->second);
else
{
req[(unsigned)ret.size()] = t;
ret.push_back(0);
}
}
}
}
for (auto i: req)
if (known.count(i.second))
ret[i.first] = known[i.second];
else
if (!_quiet)
cwarn << "Unknown assembler token" << i.second << "at address" << i.first;
return ret;
}
static void appendCode(u256s& o_code, vector& o_locs, u256s _code, vector& _locs)
{
o_locs.reserve(o_locs.size() + _locs.size());
for (auto i: _locs)
{
_code[i] += (u256)o_code.size();
o_locs.push_back(i + (unsigned)o_code.size());
}
o_code.reserve(o_code.size() + _code.size());
for (auto i: _code)
o_code.push_back(i);
}
static bool compileLispFragment(char const*& d, char const* e, bool _quiet, u256s& o_code, vector& o_locs)
{
std::map const c_arith = { { "+", Instruction::ADD }, { "-", Instruction::SUB }, { "*", Instruction::MUL }, { "/", Instruction::DIV }, { "%", Instruction::MOD } };
std::map const c_binary = { { "<", Instruction::LT }, { "<=", Instruction::LE }, { ">", Instruction::GT }, { ">=", Instruction::GE }, { "=", Instruction::EQ }, { "!=", Instruction::NOT } };
std::map const c_unary = { { "!", Instruction::NOT } };
std::set const c_allowed = { '+', '-', '*', '/', '%', '<', '>', '=', '!' };
bool exec = false;
while (d != e)
{
// skip to next token
for (; d != e && !isalnum(*d) && *d != '(' && *d != ')' && *d != '_' && *d != '"' && !c_allowed.count(*d) && *d != ';'; ++d) {}
if (d == e)
break;
switch (*d)
{
case ';':
for (; d != e && *d != '\n'; ++d) {}
break;
case '(':
exec = true;
++d;
break;
case ')':
if (exec)
{
++d;
return true;
}
else
// unexpected - return false as we don't know what to do with it.
return false;
default:
{
bool haveLiteral = false;
u256 literalValue = 0;
string t;
if (*d == '"')
{
string s = readQuoted(d, e);
if (s.size() > 32)
{
if (!_quiet)
cwarn << "String literal > 32 characters. Cropping.";
s.resize(32);
}
h256 valHash;
memcpy(valHash.data(), s.data(), s.size());
memset(valHash.data() + s.size(), 0, 32 - s.size());
literalValue = (u256)valHash;
haveLiteral = true;
}
else
{
char const* s = d;
for (; d != e && (isalnum(*d) || *d == '_' || c_allowed.count(*d)); ++d) {}
t = string(s, d - s);
if (isdigit(t[0]))
{
literalValue = readNumeric(t, _quiet);
haveLiteral = true;
}
}
if (haveLiteral)
{
bool bareLoad = true;
if (exec)
{
u256s codes;
vector locs;
if (compileLispFragment(d, e, _quiet, codes, locs))
{
appendCode(o_code, o_locs, codes, locs);
while (compileLispFragment(d, e, _quiet, codes, locs))
if (!_quiet)
cwarn << "Additional items in bare store. Ignoring.";
bareLoad = false;
}
}
o_code.push_back(Instruction::PUSH);
o_code.push_back(literalValue);
if (exec)
o_code.push_back(bareLoad ? Instruction::SLOAD : Instruction::SSTORE);
}
else
{
boost::algorithm::to_upper(t);
if (t == "IF")
{
// Compile all the code...
u256s codes[4];
vector locs[4];
for (int i = 0; i < 3; ++i)
if (!compileLispFragment(d, e, _quiet, codes[i], locs[i]))
return false;
if (compileLispFragment(d, e, _quiet, codes[3], locs[3]))
return false;
// Push the positive location.
o_code.push_back(Instruction::PUSH);
unsigned posLocation = (unsigned)o_code.size();
o_locs.push_back(posLocation);
o_code.push_back(0);
// First fragment - predicate
appendCode(o_code, o_locs, codes[0], locs[0]);
// Jump to positive if true.
o_code.push_back(Instruction::JMPI);
// Second fragment - negative.
appendCode(o_code, o_locs, codes[2], locs[2]);
// Jump to end after negative.
o_code.push_back(Instruction::PUSH);
unsigned endLocation = (unsigned)o_code.size();
o_locs.push_back(endLocation);
o_code.push_back(0);
o_code.push_back(Instruction::JMP);
// Third fragment - positive.
o_code[posLocation] = o_code.size();
appendCode(o_code, o_locs, codes[1], locs[1]);
// At end now.
o_code[endLocation] = o_code.size();
}
else if (t == "WHEN" || t == "UNLESS")
{
// Compile all the code...
u256s codes[3];
vector locs[3];
for (int i = 0; i < 2; ++i)
if (!compileLispFragment(d, e, _quiet, codes[i], locs[i]))
return false;
if (compileLispFragment(d, e, _quiet, codes[2], locs[2]))
return false;
// Push the positive location.
o_code.push_back(Instruction::PUSH);
unsigned endLocation = (unsigned)o_code.size();
o_locs.push_back(endLocation);
o_code.push_back(0);
// First fragment - predicate
appendCode(o_code, o_locs, codes[0], locs[0]);
// Jump to end...
if (t == "WHEN")
o_code.push_back(Instruction::NOT);
o_code.push_back(Instruction::JMPI);
// Second fragment - negative.
appendCode(o_code, o_locs, codes[1], locs[1]);
// At end now.
o_code[endLocation] = o_code.size();
}
else if (t == "FOR")
{
// Compile all the code...
u256s codes[3];
vector locs[3];
for (int i = 0; i < 2; ++i)
if (!compileLispFragment(d, e, _quiet, codes[i], locs[i]))
return false;
if (compileLispFragment(d, e, _quiet, codes[2], locs[2]))
return false;
unsigned startLocation = (unsigned)o_code.size();
// Push the positive location.
o_code.push_back(Instruction::PUSH);
unsigned endInsertion = (unsigned)o_code.size();
o_locs.push_back(endInsertion);
o_code.push_back(0);
// First fragment - predicate
appendCode(o_code, o_locs, codes[0], locs[0]);
// Jump to positive if true.
o_code.push_back(Instruction::NOT);
o_code.push_back(Instruction::JMPI);
// Second fragment - negative.
appendCode(o_code, o_locs, codes[1], locs[1]);
// Jump to end after negative.
o_code.push_back(Instruction::PUSH);
o_locs.push_back((unsigned)o_code.size());
o_code.push_back(startLocation);
o_code.push_back(Instruction::JMP);
// At end now.
o_code[endInsertion] = o_code.size();
}
else if (t == "SEQ")
{
while (d != e)
{
u256s codes;
vector locs;
if (compileLispFragment(d, e, _quiet, codes, locs))
appendCode(o_code, o_locs, codes, locs);
else
break;
}
}
else if (t == "AND")
{
vector codes;
vector> locs;
while (d != e)
{
codes.resize(codes.size() + 1);
locs.resize(locs.size() + 1);
if (!compileLispFragment(d, e, _quiet, codes.back(), locs.back()))
break;
}
// last one is empty.
if (codes.size() < 2)
return false;
codes.pop_back();
locs.pop_back();
vector ends;
if (codes.size() > 1)
{
o_code.push_back(Instruction::PUSH);
o_code.push_back(0);
for (unsigned i = 1; i < codes.size(); ++i)
{
// Push the false location.
o_code.push_back(Instruction::PUSH);
ends.push_back((unsigned)o_code.size());
o_locs.push_back(ends.back());
o_code.push_back(0);
// Check if true - predicate
appendCode(o_code, o_locs, codes[i - 1], locs[i - 1]);
// Jump to end...
o_code.push_back(Instruction::NOT);
o_code.push_back(Instruction::JMPI);
}
o_code.push_back(Instruction::POP);
}
// Check if true - predicate
appendCode(o_code, o_locs, codes.back(), locs.back());
// At end now.
for (auto i: ends)
o_code[i] = o_code.size();
}
else if (t == "OR")
{
vector codes;
vector> locs;
while (d != e)
{
codes.resize(codes.size() + 1);
locs.resize(locs.size() + 1);
if (!compileLispFragment(d, e, _quiet, codes.back(), locs.back()))
break;
}
// last one is empty.
if (codes.size() < 2)
return false;
codes.pop_back();
locs.pop_back();
vector ends;
if (codes.size() > 1)
{
o_code.push_back(Instruction::PUSH);
o_code.push_back(1);
for (unsigned i = 1; i < codes.size(); ++i)
{
// Push the false location.
o_code.push_back(Instruction::PUSH);
ends.push_back((unsigned)o_code.size());
o_locs.push_back(ends.back());
o_code.push_back(0);
// Check if true - predicate
appendCode(o_code, o_locs, codes[i - 1], locs[i - 1]);
// Jump to end...
o_code.push_back(Instruction::JMPI);
}
o_code.push_back(Instruction::POP);
}
// Check if true - predicate
appendCode(o_code, o_locs, codes.back(), locs.back());
// At end now.
for (auto i: ends)
o_code[i] = o_code.size();
}
else
{
auto it = c_instructions.find(t);
if (it != c_instructions.end())
{
if (exec)
{
vector>> codes(1);
while (d != e && compileLispFragment(d, e, _quiet, codes.back().first, codes.back().second))
codes.push_back(pair>());
for (auto it = codes.rbegin(); it != codes.rend(); ++it)
appendCode(o_code, o_locs, it->first, it->second);
o_code.push_back((u256)it->second);
}
else
{
o_code.push_back(Instruction::PUSH);
o_code.push_back(it->second);
}
}
else
{
auto it = c_arith.find(t);
if (it != c_arith.end())
{
int i = 0;
while (d != e)
{
u256s codes;
vector locs;
if (compileLispFragment(d, e, _quiet, codes, locs))
{
appendCode(o_code, o_locs, codes, locs);
if (i)
o_code.push_back((u256)it->second);
++i;
}
else
break;
}
}
else
{
auto it = c_binary.find(t);
if (it != c_binary.end())
{
vector>> codes(1);
while (d != e && compileLispFragment(d, e, _quiet, codes.back().first, codes.back().second))
codes.push_back(pair>());
codes.pop_back();
int i = (int)codes.size();
if (i > 2)
cwarn << "Greater than two arguments given to binary operator" << t << "; using first two only.";
for (auto it = codes.rbegin(); it != codes.rend(); ++it)
if (--i < 2)
appendCode(o_code, o_locs, it->first, it->second);
if (it->second == Instruction::NOT)
o_code.push_back(Instruction::EQ);
o_code.push_back((u256)it->second);
}
else
{
auto it = c_unary.find(t);
if (it != c_unary.end())
{
vector>> codes(1);
while (d != e && compileLispFragment(d, e, _quiet, codes.back().first, codes.back().second))
codes.push_back(pair>());
codes.pop_back();
int i = (int)codes.size();
if (i > 1)
cwarn << "Greater than one argument given to unary operator" << t << "; using first only.";
for (auto it = codes.rbegin(); it != codes.rend(); ++it)
if (--i < 1)
appendCode(o_code, o_locs, it->first, it->second);
o_code.push_back(it->second);
}
else if (!_quiet)
cwarn << "Unknown assembler token" << t;
}
}
}
}
}
if (!exec)
return true;
}
}
}
return false;
}
u256s eth::compileLisp(std::string const& _code, bool _quiet)
{
char const* d = _code.data();
char const* e = _code.data() + _code.size();
u256s ret;
vector locs;
compileLispFragment(d, e, _quiet, ret, locs);
return ret;
}
string eth::disassemble(u256s const& _mem)
{
stringstream ret;
uint numerics = 0;
for (auto it = _mem.begin(); it != _mem.end(); ++it)
{
u256 n = *it;
auto iit = c_instructionInfo.find((Instruction)(uint)n);
if (numerics || iit == c_instructionInfo.end() || (u256)(uint)iit->first != n) // not an instruction or expecting an argument...
{
if (numerics)
numerics--;
ret << "0x" << hex << n << " ";
}
else
{
auto const& ii = iit->second;
ret << ii.name << " ";
numerics = ii.additional;
}
}
return ret.str();
}