/* This file is part of cpp-ethereum. cpp-ethereum is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. cpp-ethereum is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with cpp-ethereum. If not, see . */ /** * @author Christian * @date 2014 * Solidity abstract syntax tree. */ #include #include #include #include using namespace std; namespace dev { namespace solidity { void ContractDefinition::accept(ASTVisitor& _visitor) { if (_visitor.visit(*this)) { listAccept(m_definedStructs, _visitor); listAccept(m_stateVariables, _visitor); listAccept(m_definedFunctions, _visitor); } _visitor.endVisit(*this); } void StructDefinition::accept(ASTVisitor& _visitor) { if (_visitor.visit(*this)) listAccept(m_members, _visitor); _visitor.endVisit(*this); } void ParameterList::accept(ASTVisitor& _visitor) { if (_visitor.visit(*this)) listAccept(m_parameters, _visitor); _visitor.endVisit(*this); } void FunctionDefinition::accept(ASTVisitor& _visitor) { if (_visitor.visit(*this)) { m_parameters->accept(_visitor); if (m_returnParameters) m_returnParameters->accept(_visitor); m_body->accept(_visitor); } _visitor.endVisit(*this); } void VariableDeclaration::accept(ASTVisitor& _visitor) { if (_visitor.visit(*this)) if (m_typeName) m_typeName->accept(_visitor); _visitor.endVisit(*this); } void TypeName::accept(ASTVisitor& _visitor) { _visitor.visit(*this); _visitor.endVisit(*this); } void ElementaryTypeName::accept(ASTVisitor& _visitor) { _visitor.visit(*this); _visitor.endVisit(*this); } void UserDefinedTypeName::accept(ASTVisitor& _visitor) { _visitor.visit(*this); _visitor.endVisit(*this); } void Mapping::accept(ASTVisitor& _visitor) { if (_visitor.visit(*this)) { m_keyType->accept(_visitor); m_valueType->accept(_visitor); } _visitor.endVisit(*this); } void Statement::accept(ASTVisitor& _visitor) { _visitor.visit(*this); _visitor.endVisit(*this); } void Block::accept(ASTVisitor& _visitor) { if (_visitor.visit(*this)) listAccept(m_statements, _visitor); _visitor.endVisit(*this); } void IfStatement::accept(ASTVisitor& _visitor) { if (_visitor.visit(*this)) { m_condition->accept(_visitor); m_trueBody->accept(_visitor); if (m_falseBody) m_falseBody->accept(_visitor); } _visitor.endVisit(*this); } void BreakableStatement::accept(ASTVisitor& _visitor) { _visitor.visit(*this); _visitor.endVisit(*this); } void WhileStatement::accept(ASTVisitor& _visitor) { if (_visitor.visit(*this)) { m_condition->accept(_visitor); m_body->accept(_visitor); } _visitor.endVisit(*this); } void Continue::accept(ASTVisitor& _visitor) { _visitor.visit(*this); _visitor.endVisit(*this); } void Break::accept(ASTVisitor& _visitor) { _visitor.visit(*this); _visitor.endVisit(*this); } void Return::accept(ASTVisitor& _visitor) { if (_visitor.visit(*this)) if (m_expression) m_expression->accept(_visitor); _visitor.endVisit(*this); } void ExpressionStatement::accept(ASTVisitor& _visitor) { if (_visitor.visit(*this)) if (m_expression) m_expression->accept(_visitor); _visitor.endVisit(*this); } void VariableDefinition::accept(ASTVisitor& _visitor) { if (_visitor.visit(*this)) { m_variable->accept(_visitor); if (m_value) m_value->accept(_visitor); } _visitor.endVisit(*this); } void Assignment::accept(ASTVisitor& _visitor) { if (_visitor.visit(*this)) { m_leftHandSide->accept(_visitor); m_rightHandSide->accept(_visitor); } _visitor.endVisit(*this); } void UnaryOperation::accept(ASTVisitor& _visitor) { if (_visitor.visit(*this)) m_subExpression->accept(_visitor); _visitor.endVisit(*this); } void BinaryOperation::accept(ASTVisitor& _visitor) { if (_visitor.visit(*this)) { m_left->accept(_visitor); m_right->accept(_visitor); } _visitor.endVisit(*this); } void FunctionCall::accept(ASTVisitor& _visitor) { if (_visitor.visit(*this)) { m_expression->accept(_visitor); listAccept(m_arguments, _visitor); } _visitor.endVisit(*this); } void MemberAccess::accept(ASTVisitor& _visitor) { if (_visitor.visit(*this)) m_expression->accept(_visitor); _visitor.endVisit(*this); } void IndexAccess::accept(ASTVisitor& _visitor) { if (_visitor.visit(*this)) { m_base->accept(_visitor); m_index->accept(_visitor); } _visitor.endVisit(*this); } void Identifier::accept(ASTVisitor& _visitor) { _visitor.visit(*this); _visitor.endVisit(*this); } void ElementaryTypeNameExpression::accept(ASTVisitor& _visitor) { _visitor.visit(*this); _visitor.endVisit(*this); } void Literal::accept(ASTVisitor& _visitor) { _visitor.visit(*this); _visitor.endVisit(*this); } TypeError ASTNode::createTypeError(string const& _description) { return TypeError() << errinfo_sourceLocation(getLocation()) << errinfo_comment(_description); } void Block::checkTypeRequirements() { for (shared_ptr const& statement: m_statements) statement->checkTypeRequirements(); } void IfStatement::checkTypeRequirements() { m_condition->expectType(BoolType()); m_trueBody->checkTypeRequirements(); if (m_falseBody) m_falseBody->checkTypeRequirements(); } void WhileStatement::checkTypeRequirements() { m_condition->expectType(BoolType()); m_body->checkTypeRequirements(); } void Return::checkTypeRequirements() { if (!m_expression) return; if (asserts(m_returnParameters)) BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Return parameters not assigned.")); if (m_returnParameters->getParameters().size() != 1) BOOST_THROW_EXCEPTION(createTypeError("Different number of arguments in return statement " "than in returns declaration.")); // this could later be changed such that the paramaters type is an anonymous struct type, // but for now, we only allow one return parameter m_expression->expectType(*m_returnParameters->getParameters().front()->getType()); } void VariableDefinition::checkTypeRequirements() { // Variables can be declared without type (with "var"), in which case the first assignment // setsthe type. // Note that assignments before the first declaration are legal because of the special scoping // rules inherited from JavaScript. if (m_value) { if (m_variable->getType()) m_value->expectType(*m_variable->getType()); else { // no type declared and no previous assignment, infer the type m_value->checkTypeRequirements(); m_variable->setType(m_value->getType()); } } } void Assignment::checkTypeRequirements() { m_leftHandSide->checkTypeRequirements(); if (!m_leftHandSide->isLvalue()) BOOST_THROW_EXCEPTION(createTypeError("Expression has to be an lvalue.")); m_rightHandSide->expectType(*m_leftHandSide->getType()); m_type = m_leftHandSide->getType(); if (m_assigmentOperator != Token::ASSIGN) // compound assignment if (!m_type->acceptsBinaryOperator(Token::AssignmentToBinaryOp(m_assigmentOperator))) BOOST_THROW_EXCEPTION(createTypeError("Operator not compatible with type.")); } void ExpressionStatement::checkTypeRequirements() { m_expression->checkTypeRequirements(); } void Expression::expectType(Type const& _expectedType) { checkTypeRequirements(); if (!getType()->isImplicitlyConvertibleTo(_expectedType)) BOOST_THROW_EXCEPTION(createTypeError("Type not implicitly convertible to expected type.")); //@todo provide more information to the exception } void UnaryOperation::checkTypeRequirements() { // INC, DEC, ADD, SUB, NOT, BIT_NOT, DELETE m_subExpression->checkTypeRequirements(); if (m_operator == Token::Value::INC || m_operator == Token::Value::DEC || m_operator == Token::Value::DELETE) if (!m_subExpression->isLvalue()) BOOST_THROW_EXCEPTION(createTypeError("Expression has to be an lvalue.")); m_type = m_subExpression->getType(); if (!m_type->acceptsUnaryOperator(m_operator)) BOOST_THROW_EXCEPTION(createTypeError("Unary operator not compatible with type.")); } void BinaryOperation::checkTypeRequirements() { m_left->checkTypeRequirements(); m_right->checkTypeRequirements(); if (m_right->getType()->isImplicitlyConvertibleTo(*m_left->getType())) m_commonType = m_left->getType(); else if (m_left->getType()->isImplicitlyConvertibleTo(*m_right->getType())) m_commonType = m_right->getType(); else BOOST_THROW_EXCEPTION(createTypeError("No common type found in binary operation.")); if (Token::isCompareOp(m_operator)) m_type = make_shared(); else { m_type = m_commonType; if (!m_commonType->acceptsBinaryOperator(m_operator)) BOOST_THROW_EXCEPTION(createTypeError("Operator not compatible with type.")); } } void FunctionCall::checkTypeRequirements() { m_expression->checkTypeRequirements(); for (ASTPointer const& argument: m_arguments) argument->checkTypeRequirements(); Type const* expressionType = m_expression->getType().get(); if (isTypeConversion()) { TypeType const& type = dynamic_cast(*expressionType); //@todo for structs, we have to check the number of arguments to be equal to the // number of non-mapping members if (m_arguments.size() != 1) BOOST_THROW_EXCEPTION(createTypeError("More than one argument for " "explicit type conersion.")); if (!m_arguments.front()->getType()->isExplicitlyConvertibleTo(*type.getActualType())) BOOST_THROW_EXCEPTION(createTypeError("Explicit type conversion not allowed.")); m_type = type.getActualType(); } else { //@todo would be nice to create a struct type from the arguments // and then ask if that is implicitly convertible to the struct represented by the // function parameters FunctionDefinition const& fun = dynamic_cast(*expressionType).getFunction(); vector> const& parameters = fun.getParameters(); if (parameters.size() != m_arguments.size()) BOOST_THROW_EXCEPTION(createTypeError("Wrong argument count for function call.")); for (size_t i = 0; i < m_arguments.size(); ++i) if (!m_arguments[i]->getType()->isImplicitlyConvertibleTo(*parameters[i]->getType())) BOOST_THROW_EXCEPTION(createTypeError("Invalid type for argument in function call.")); // @todo actually the return type should be an anonymous struct, // but we change it to the type of the first return value until we have structs if (fun.getReturnParameters().empty()) m_type = make_shared(); else m_type = fun.getReturnParameters().front()->getType(); } } bool FunctionCall::isTypeConversion() const { return m_expression->getType()->getCategory() == Type::Category::TYPE; } void MemberAccess::checkTypeRequirements() { BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Member access not yet implemented.")); // m_type = ; } void IndexAccess::checkTypeRequirements() { BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Index access not yet implemented.")); // m_type = ; } void Identifier::checkTypeRequirements() { if (asserts(m_referencedDeclaration)) BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Identifier not resolved.")); VariableDeclaration* variable = dynamic_cast(m_referencedDeclaration); if (variable) { if (!variable->getType()) BOOST_THROW_EXCEPTION(createTypeError("Variable referenced before type could be determined.")); m_type = variable->getType(); m_isLvalue = true; return; } //@todo can we unify these with TypeName::toType()? StructDefinition* structDef = dynamic_cast(m_referencedDeclaration); if (structDef) { // note that we do not have a struct type here m_type = make_shared(make_shared(*structDef)); return; } FunctionDefinition* functionDef = dynamic_cast(m_referencedDeclaration); if (functionDef) { // a function reference is not a TypeType, because calling a TypeType converts to the type. // Calling a function (e.g. function(12), otherContract.function(34)) does not do a type // conversion. m_type = make_shared(*functionDef); return; } ContractDefinition* contractDef = dynamic_cast(m_referencedDeclaration); if (contractDef) { m_type = make_shared(make_shared(*contractDef)); return; } BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Declaration reference of unknown/forbidden type.")); } void ElementaryTypeNameExpression::checkTypeRequirements() { m_type = make_shared(Type::fromElementaryTypeName(m_typeToken)); } void Literal::checkTypeRequirements() { m_type = Type::forLiteral(*this); } } }