/* This file is part of cpp-ethereum. cpp-ethereum is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. cpp-ethereum is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with cpp-ethereum. If not, see . */ /** @file Assembly.cpp * @author Gav Wood * @date 2014 */ #include "Assembly.h" #include using namespace std; using namespace eth; int AssemblyItem::deposit() const { switch (m_type) { case Operation: return c_instructionInfo.at((Instruction)(byte)m_data).ret - c_instructionInfo.at((Instruction)(byte)m_data).args; case Push: case PushString: case PushTag: case PushData: return 1; case Tag: return 0; default:; } return 0; } unsigned Assembly::bytesRequired() const { for (unsigned br = 1;; ++br) { unsigned ret = 1; for (auto const& i: m_data) ret += i.second.size(); for (AssemblyItem const& i: m_items) switch (i.m_type) { case Operation: ret++; break; case PushString: ret += 33; break; case Push: ret += 1 + max(1, eth::bytesRequired(i.m_data)); break; case PushTag: case PushData: ret += 1 + br; case Tag:; default:; } if (eth::bytesRequired(ret) <= br) return ret; } } void Assembly::append(Assembly const& _a) { auto newDeposit = m_deposit + _a.deposit(); for (AssemblyItem i: _a.m_items) { if (i.type() == Tag || i.type() == PushTag) i.m_data += m_usedTags; append(i); } m_deposit = newDeposit; m_usedTags += _a.m_usedTags; for (auto const& i: _a.m_data) m_data.insert(i); for (auto const& i: _a.m_strings) m_strings.insert(i); assert(!_a.m_baseDeposit); assert(!_a.m_totalDeposit); } void Assembly::append(Assembly const& _a, int _deposit) { if (_deposit > _a.m_deposit) throw InvalidDeposit(); else { append(_a); while (_deposit++ < _a.m_deposit) append(Instruction::POP); } } ostream& eth::operator<<(ostream& _out, AssemblyItemsConstRef _i) { for (AssemblyItem const& i: _i) switch (i.type()) { case Operation: _out << " " << c_instructionInfo.at((Instruction)(byte)i.data()).name; break; case Push: _out << " PUSH" << i.data(); break; case PushString: _out << " PUSH'[" << hex << (unsigned)i.data() << "]"; break; case PushTag: _out << " PUSH[tag" << i.data() << "]"; break; case Tag: _out << " tag" << i.data() << ":"; break; case PushData: _out << " PUSH*[" << hex << (unsigned)i.data() << "]"; break; case UndefinedItem: _out << " ???"; default:; } return _out; } ostream& Assembly::streamOut(ostream& _out) const { _out << ".code:" << endl; for (AssemblyItem const& i: m_items) switch (i.m_type) { case Operation: _out << " " << c_instructionInfo.at((Instruction)(byte)i.m_data).name << endl; break; case Push: _out << " PUSH " << i.m_data << endl; break; case PushString: _out << " PUSH \"" << m_strings.at((h256)i.m_data) << "\"" << endl; break; case PushTag: _out << " PUSH [tag" << i.m_data << "]" << endl; break; case Tag: _out << "tag" << i.m_data << ": " << endl; break; case PushData: _out << " PUSH [" << hex << (unsigned)i.m_data << "]" << endl; break; default:; } if (m_data.size()) { _out << ".data:" << endl; for (auto const& i: m_data) _out << " " << hex << (unsigned)(u256)i.first << ": " << toHex(i.second) << endl; } return _out; } AssemblyItem const& Assembly::append(AssemblyItem const& _i) { m_deposit += _i.deposit(); m_items.push_back(_i); return back(); } void Assembly::injectStart(AssemblyItem const& _i) { m_items.insert(m_items.begin(), _i); } inline bool matches(AssemblyItemsConstRef _a, AssemblyItemsConstRef _b) { if (_a.size() != _b.size()) return false; for (unsigned i = 0; i < _a.size(); ++i) if (!_a[i].match(_b[i])) return false; return true; } struct OptimiserChannel: public LogChannel { static const char* name() { return "OPT"; } static const int verbosity = 12; }; #define copt eth::LogOutputStream() void Assembly::optimise() { map> c_simple = { { Instruction::SUB, [](u256 a, u256 b)->u256{return a - b;} }, { Instruction::DIV, [](u256 a, u256 b)->u256{return a / b;} }, { Instruction::SDIV, [](u256 a, u256 b)->u256{return s2u(u2s(a) / u2s(b));} }, { Instruction::MOD, [](u256 a, u256 b)->u256{return a % b;} }, { Instruction::SMOD, [](u256 a, u256 b)->u256{return s2u(u2s(a) % u2s(b));} }, { Instruction::EXP, [](u256 a, u256 b)->u256{return boost::multiprecision::pow(a, (unsigned)b);} }, { Instruction::LT, [](u256 a, u256 b)->u256{return a < b ? 1 : 0;} }, { Instruction::GT, [](u256 a, u256 b)->u256{return a > b ? 1 : 0;} }, { Instruction::SLT, [](u256 a, u256 b)->u256{return u2s(a) < u2s(b) ? 1 : 0;} }, { Instruction::SGT, [](u256 a, u256 b)->u256{return u2s(a) > u2s(b) ? 1 : 0;} }, { Instruction::EQ, [](u256 a, u256 b)->u256{return a == b ? 1 : 0;} }, }; map> c_associative = { { Instruction::ADD, [](u256 a, u256 b)->u256{return a + b;} }, { Instruction::MUL, [](u256 a, u256 b)->u256{return a * b;} }, }; std::vector>> rules = { { { Push, Instruction::POP }, [](AssemblyItemsConstRef) -> AssemblyItems { return {}; } }, { { PushTag, Instruction::POP }, [](AssemblyItemsConstRef) -> AssemblyItems { return {}; } }, { { PushString, Instruction::POP }, [](AssemblyItemsConstRef) -> AssemblyItems { return {}; } }, { { Push, PushTag, Instruction::JUMPI }, [](AssemblyItemsConstRef m) -> AssemblyItems { if (m[0].data()) return { m[1], Instruction::JUMP }; else return {}; } }, { { Instruction::NOT, Instruction::NOT }, [](AssemblyItemsConstRef) -> AssemblyItems { return {}; } }, }; for (auto const& i: c_simple) rules.push_back({ { Push, Push, i.first }, [&](AssemblyItemsConstRef m) -> AssemblyItems { return { i.second(m[1].data(), m[0].data()) }; } }); for (auto const& i: c_associative) { rules.push_back({ { Push, Push, i.first }, [&](AssemblyItemsConstRef m) -> AssemblyItems { return { i.second(m[1].data(), m[0].data()) }; } }); rules.push_back({ { Push, i.first, Push, i.first }, [&](AssemblyItemsConstRef m) -> AssemblyItems { return { i.second(m[2].data(), m[0].data()), i.first }; } }); rules.push_back({ { PushTag, Instruction::JUMP, Tag }, [&](AssemblyItemsConstRef m) -> AssemblyItems { if (m[0].m_data == m[2].m_data) return {}; else return m.toVector(); }}); } copt << *this; unsigned total = 0; for (unsigned count = 1; count > 0; total += count) { count = 0; map tags; for (unsigned i = 0; i < m_items.size(); ++i) { for (auto const& r: rules) { auto vr = AssemblyItemsConstRef(&m_items).cropped(i, r.first.size()); if (matches(&r.first, vr)) { auto rw = r.second(vr); if (rw.size() < vr.size()) { copt << vr << "matches" << AssemblyItemsConstRef(&r.first) << "becomes..."; for (unsigned j = 0; j < vr.size(); ++j) if (j < rw.size()) m_items[i + j] = rw[j]; else m_items.erase(m_items.begin() + i + rw.size()); copt << AssemblyItemsConstRef(&rw); count++; copt << "Now:\n" << m_items; } } } if (m_items[i].type() == Operation && m_items[i].data() == (byte)Instruction::JUMP) { bool o = false; while (m_items.size() > i + 1 && m_items[i + 1].type() != Tag) { m_items.erase(m_items.begin() + i + 1); o = true; } if (o) { copt << "Jump with no tag. Now:\n" << m_items; ++count; } } } for (unsigned i = 0; i < m_items.size(); ++i) if (m_items[i].type() == Tag) tags.insert(make_pair(m_items[i].data(), i)); for (auto const& i: m_items) if (i.type() == PushTag) tags.erase(i.data()); if (tags.size()) { auto t = *tags.begin(); unsigned i = t.second; if (i && m_items[i - 1].type() == Operation && m_items[i - 1].data() == (byte)Instruction::JUMP) while (i < m_items.size() && (m_items[i].type() != Tag || tags.count(m_items[i].data()))) { if (m_items[i].type() == Tag && tags.count(m_items[i].data())) tags.erase(m_items[i].data()); m_items.erase(m_items.begin() + i); } else { m_items.erase(m_items.begin() + i); tags.erase(t.first); } copt << "Unused tag. Now:\n" << m_items; ++count; } } copt << total << " optimisations done."; } bytes Assembly::assemble() const { bytes ret; unsigned totalBytes = bytesRequired(); ret.reserve(totalBytes); vector tagPos(m_usedTags); map tagRef; multimap dataRef; unsigned bytesPerTag = eth::bytesRequired(totalBytes); byte tagPush = (byte)Instruction::PUSH1 - 1 + bytesPerTag; for (AssemblyItem const& i: m_items) switch (i.m_type) { case Operation: ret.push_back((byte)i.m_data); break; case PushString: { ret.push_back((byte)Instruction::PUSH32); unsigned ii = 0; for (auto j: m_strings.at((h256)i.m_data)) if (++ii > 32) break; else ret.push_back((byte)j); while (ii++ < 32) ret.push_back(0); break; } case Push: { byte b = max(1, eth::bytesRequired(i.m_data)); ret.push_back((byte)Instruction::PUSH1 - 1 + b); ret.resize(ret.size() + b); bytesRef byr(&ret.back() + 1 - b, b); toBigEndian(i.m_data, byr); break; } case PushTag: { ret.push_back(tagPush); tagRef[ret.size()] = (unsigned)i.m_data; ret.resize(ret.size() + bytesPerTag); break; } case PushData: { ret.push_back(tagPush); dataRef.insert(make_pair((h256)i.m_data, ret.size())); ret.resize(ret.size() + bytesPerTag); break; } case Tag: tagPos[(unsigned)i.m_data] = ret.size(); break; default:; } for (auto const& i: tagRef) { bytesRef r(ret.data() + i.first, bytesPerTag); toBigEndian(tagPos[i.second], r); } if (m_data.size()) { ret.push_back(0); for (auto const& i: m_data) { auto its = dataRef.equal_range(i.first); if (its.first != its.second) { for (auto it = its.first; it != its.second; ++it) { bytesRef r(ret.data() + it->second, bytesPerTag); toBigEndian(ret.size(), r); } for (auto b: i.second) ret.push_back(b); } } } return ret; }