/* This file is part of cpp-ethereum. cpp-ethereum is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. cpp-ethereum is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with cpp-ethereum. If not, see . */ /** @file Common.h * @author Gav Wood * @date 2014 * * Shared algorithms and data types. */ #pragma once // way to many uint to size_t warnings in 32 bit build #ifdef _M_IX86 #pragma warning(disable:4244) #endif #ifdef _MSC_VER #define _ALLOW_KEYWORD_MACROS #define noexcept throw() #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "vector_ref.h" // CryptoPP defines byte in the global namespace, so so must we. using byte = uint8_t; namespace eth { // Binary data types. using bytes = std::vector; using bytesRef = vector_ref; using bytesConstRef = vector_ref; // Numeric types. using bigint = boost::multiprecision::number>; using u256 = boost::multiprecision::number>; using s256 = boost::multiprecision::number>; using u160 = boost::multiprecision::number>; using s160 = boost::multiprecision::number>; using uint = uint64_t; using sint = int64_t; using u256s = std::vector; using u160s = std::vector; using u256Set = std::set; using u160Set = std::set; template inline void toBigEndian(T _val, Out& o_out); template inline T fromBigEndian(In const& _bytes); /// Convert a series of bytes to the corresponding string of hex duplets. /// @param _w specifies the width of each of the elements. Defaults to two - enough to represent a byte. /// @example asHex("A\x69") == "4169" template std::string asHex(_T const& _data, int _w = 2) { std::ostringstream ret; for (auto i: _data) ret << std::hex << std::setfill('0') << std::setw(_w) << (int)(typename std::make_unsigned::type)i; return ret.str(); } template class FixedHash { using Arith = boost::multiprecision::number>; public: enum { size = N }; enum ConstructFromPointerType { ConstructFromPointer }; FixedHash() { m_data.fill(0); } FixedHash(Arith const& _arith) { toBigEndian(_arith, m_data); } explicit FixedHash(bytes const& _b) { memcpy(m_data.data(), _b.data(), std::min(_b.size(), N)); } explicit FixedHash(byte const* _bs, ConstructFromPointerType) { memcpy(m_data.data(), _bs, N); } operator Arith() const { return fromBigEndian(m_data); } operator bool() const { return ((Arith)*this) != 0; } bool operator==(FixedHash const& _c) const { return m_data == _c.m_data; } bool operator!=(FixedHash const& _c) const { return m_data != _c.m_data; } bool operator<(FixedHash const& _c) const { return m_data < _c.m_data; } FixedHash& operator^=(FixedHash const& _c) { for (auto i = 0; i < N; ++i) m_data[i] ^= _c.m_data[i]; return *this; } FixedHash operator^(FixedHash const& _c) const { return FixedHash(*this) ^= _c; } FixedHash& operator|=(FixedHash const& _c) { for (auto i = 0; i < N; ++i) m_data[i] |= _c.m_data[i]; return *this; } FixedHash operator|(FixedHash const& _c) const { return FixedHash(*this) |= _c; } FixedHash& operator&=(FixedHash const& _c) { for (auto i = 0; i < N; ++i) m_data[i] &= _c.m_data[i]; return *this; } FixedHash operator&(FixedHash const& _c) const { return FixedHash(*this) &= _c; } FixedHash& operator~() { for (auto i = 0; i < N; ++i) m_data[i] = ~m_data[i]; return *this; } std::string abridged() const { return asHex(ref().cropped(0, 4)) + ".."; } byte& operator[](unsigned _i) { return m_data[_i]; } byte operator[](unsigned _i) const { return m_data[_i]; } bytesRef ref() { return bytesRef(m_data.data(), N); } bytesConstRef ref() const { return bytesConstRef(m_data.data(), N); } byte* data() { return m_data.data(); } byte const* data() const { return m_data.data(); } bytes asBytes() const { return bytes(data(), data() + N); } std::array& asArray() { return m_data; } std::array const& asArray() const { return m_data; } private: std::array m_data; }; template inline std::ostream& operator<<(std::ostream& _out, FixedHash const& _h) { _out << std::noshowbase << std::hex << std::setfill('0'); for (unsigned i = 0; i < N; ++i) _out << std::setw(2) << (int)_h[i]; _out << std::dec; return _out; } using h512 = FixedHash<64>; using h256 = FixedHash<32>; using h160 = FixedHash<20>; using h256s = std::vector; using h160s = std::vector; using h256Set = std::set; using h160Set = std::set; using Secret = h256; using Public = h512; using Address = h160; using Addresses = h160s; // Map types. using StringMap = std::map; using u256Map = std::map; using HexMap = std::map; // Null/Invalid values for convenience. static const u256 Invalid256 = ~(u256)0; static const bytes NullBytes; /// Logging class NullOutputStream { public: template NullOutputStream& operator<<(T const&) { return *this; } }; extern std::map g_logOverride; struct ThreadLocalLogName { ThreadLocalLogName(std::string _name) { m_name.reset(new std::string(_name)); }; boost::thread_specific_ptr m_name; }; extern ThreadLocalLogName t_logThreadName; inline void setThreadName(char const* _n) { t_logThreadName.m_name.reset(new std::string(_n)); } struct LogChannel { static const char* name() { return " "; } static const int verbosity = 1; }; struct LeftChannel: public LogChannel { static const char* name() { return "<<<"; } }; struct RightChannel: public LogChannel { static const char* name() { return ">>>"; } }; struct WarnChannel: public LogChannel { static const char* name() { return "!!!"; } static const int verbosity = 0; }; struct NoteChannel: public LogChannel { static const char* name() { return "***"; } }; struct DebugChannel: public LogChannel { static const char* name() { return "---"; } static const int verbosity = 0; }; extern int g_logVerbosity; extern std::function g_logPost; void simpleDebugOut(std::string const&, char const* ); template class LogOutputStream { public: LogOutputStream(bool _term = true) { std::type_info const* i = &typeid(Id); auto it = g_logOverride.find(i); if ((it != g_logOverride.end() && it->second == true) || (it == g_logOverride.end() && Id::verbosity <= g_logVerbosity)) { time_t rawTime = std::chrono::system_clock::to_time_t(std::chrono::system_clock::now()); char buf[24]; if (strftime(buf, 24, "%X", localtime(&rawTime)) == 0) buf[0] = '\0'; // empty if case strftime fails sstr << Id::name << " [ " << buf << " | " << *(t_logThreadName.m_name.get()) << (_term ? " ] " : ""); } } ~LogOutputStream() { if (Id::verbosity <= g_logVerbosity) g_logPost(sstr.str(), Id::name()); } template LogOutputStream& operator<<(T const& _t) { if (Id::verbosity <= g_logVerbosity) { if (_AutoSpacing && sstr.str().size() && sstr.str().back() != ' ') sstr << " "; sstr << _t; } return *this; } std::stringstream sstr; }; // Dirties the global namespace, but oh so convenient... #define cnote eth::LogOutputStream() #define cwarn eth::LogOutputStream() #define ndebug if (true) {} else eth::NullOutputStream() #define nlog(X) if (true) {} else eth::NullOutputStream() #define nslog(X) if (true) {} else eth::NullOutputStream() #if NDEBUG #define cdebug ndebug #else #define cdebug eth::LogOutputStream() #endif #if NLOG #define clog(X) nlog(X) #define cslog(X) nslog(X) #else #define clog(X) eth::LogOutputStream() #define cslog(X) eth::LogOutputStream() #endif /// User-friendly string representation of the amount _b in wei. std::string formatBalance(u256 _b); /// Converts arbitrary value to string representation using std::stringstream. template std::string toString(_T const& _t) { std::ostringstream o; o << _t; return o.str(); } /// Converts byte array to a string containing the same (binary) data. Unless /// the byte array happens to contain ASCII data, this won't be printable. inline std::string asString(bytes const& _b) { return std::string((char const*)_b.data(), (char const*)(_b.data() + _b.size())); } /// Converts a string to a byte array containing the string's (byte) data. inline bytes asBytes(std::string const& _b) { return bytes((byte const*)_b.data(), (byte const*)(_b.data() + _b.size())); } /// Trims a given number of elements from the front of a collection. /// Only works for POD element types. template void trimFront(_T& _t, uint _elements) { static_assert(std::is_pod::value, ""); memmove(_t.data(), _t.data() + _elements, (_t.size() - _elements) * sizeof(_t[0])); _t.resize(_t.size() - _elements); } /// Pushes an element on to the front of a collection. /// Only works for POD element types. template void pushFront(_T& _t, _U _e) { static_assert(std::is_pod::value, ""); _t.push_back(_e); memmove(_t.data() + 1, _t.data(), (_t.size() - 1) * sizeof(_e)); _t[0] = _e; } /// Creates a random, printable, word. std::string randomWord(); /// Escapes a string into the C-string representation. /// @p _all if true will escape all characters, not just the unprintable ones. std::string escaped(std::string const& _s, bool _all = true); /// Converts a (printable) ASCII hex character into the correspnding integer value. /// @example fromHex('A') == 10 && fromHex('f') == 15 && fromHex('5') == 5 int fromHex(char _i); /// Converts a (printable) ASCII hex string into the corresponding byte stream. /// @example fromUserHex("41626261") == asBytes("Abba") bytes fromUserHex(std::string const& _s); /// Converts a string into the big-endian base-16 stream of integers (NOT ASCII). /// @example toHex("A")[0] == 4 && toHex("A")[1] == 1 bytes toHex(std::string const& _s); /// Converts a templated integer value to the big-endian byte-stream represented on a templated collection. /// The size of the collection object will be unchanged. If it is too small, it will not represent the /// value properly, if too big then the additional elements will be zeroed out. /// @a _Out will typically be either std::string or bytes. /// @a _T will typically by uint, u160, u256 or bigint. template inline void toBigEndian(_T _val, _Out& o_out) { for (auto i = o_out.size(); i-- != 0; _val >>= 8) o_out[i] = (typename _Out::value_type)(uint8_t)_val; } /// Converts a big-endian byte-stream represented on a templated collection to a templated integer value. /// @a _In will typically be either std::string or bytes. /// @a _T will typically by uint, u160, u256 or bigint. template inline _T fromBigEndian(_In const& _bytes) { _T ret = 0; for (auto i: _bytes) ret = (ret << 8) | (byte)(typename std::make_unsigned::type)i; return ret; } /// Convenience functions for toBigEndian inline std::string toBigEndianString(u256 _val) { std::string ret(32, '\0'); toBigEndian(_val, ret); return ret; } inline std::string toBigEndianString(u160 _val) { std::string ret(20, '\0'); toBigEndian(_val, ret); return ret; } inline bytes toBigEndian(u256 _val) { bytes ret(32); toBigEndian(_val, ret); return ret; } inline bytes toBigEndian(u160 _val) { bytes ret(20); toBigEndian(_val, ret); return ret; } /// Convenience function for toBigEndian. /// @returns a string just big enough to represent @a _val. template inline std::string toCompactBigEndianString(_T _val) { int i = 0; for (_T v = _val; v; ++i, v >>= 8) {} std::string ret(i, '\0'); toBigEndian(_val, ret); return ret; } /// Determines the length of the common prefix of the two collections given. /// @returns the number of elements both @a _t and @a _u share, in order, at the beginning. /// @example commonPrefix("Hello world!", "Hello, world!") == 5 template uint commonPrefix(_T const& _t, _U const& _u) { uint s = std::min(_t.size(), _u.size()); for (uint i = 0;; ++i) if (i == s || _t[i] != _u[i]) return i; return s; } /// Convert the given value into h160 (160-bit unsigned integer) using the right 20 bytes. inline h160 right160(h256 const& _t) { h160 ret; memcpy(ret.data(), _t.data() + 12, 20); return ret; } /// Convert the given value into h160 (160-bit unsigned integer) using the left 20 bytes. inline h160 left160(h256 const& _t) { h160 ret; memcpy(&ret[0], _t.data(), 20); return ret; } /// Convert the given value into u160 (160-bit unsigned integer) by taking the lowest order 160-bits and discarding the rest. inline u160 low160(u256 const& _t) { return (u160)(_t & ((((u256)1) << 160) - 1)); } inline u160 low160(bigint const& _t) { return (u160)(_t & ((((bigint)1) << 160) - 1)); } /// Convert the given value into u160 (160-bit unsigned integer) by taking the lowest order 160-bits and discarding the rest. inline u160 high160(u256 const& _t) { return (u160)(_t >> 96); } /// Concatenate two vectors of elements. _T must be POD. template inline std::vector<_T>& operator+=(std::vector::value, _T>::type>& _a, std::vector<_T> const& _b) { auto s = _a.size(); _a.resize(_a.size() + _b.size()); memcpy(_a.data() + s, _b.data(), _b.size() * sizeof(_T)); return _a; } /// Concatenate two vectors of elements. _T must be POD. template inline std::vector<_T> operator+(std::vector::value, _T>::type> const& _a, std::vector<_T> const& _b) { std::vector<_T> ret(_a); return ret += _b; } /// SHA-3 convenience routines. void sha3(bytesConstRef _input, bytesRef _output); std::string sha3(std::string const& _input, bool _hex); bytes sha3Bytes(bytesConstRef _input); inline bytes sha3Bytes(std::string const& _input) { return sha3Bytes((std::string*)&_input); } inline bytes sha3Bytes(bytes const& _input) { return sha3Bytes((bytes*)&_input); } h256 sha3(bytesConstRef _input); inline h256 sha3(bytes const& _input) { return sha3(bytesConstRef((bytes*)&_input)); } inline h256 sha3(std::string const& _input) { return sha3(bytesConstRef(_input)); } /// Get information concerning the currency denominations. std::vector> const& units(); /// Convert a private key into the public key equivalent. /// @returns 0 if it's not a valid private key. Address toAddress(h256 _private); class KeyPair { public: KeyPair() {} KeyPair(Secret _k); static KeyPair create(); Secret const& secret() const { return m_secret; } Secret const& sec() const { return m_secret; } Public const& pub() const { return m_public; } Address const& address() const { return m_address; } private: Secret m_secret; Public m_public; Address m_address; }; static const u256 Uether = ((((u256(1000000000) * 1000000000) * 1000000000) * 1000000000) * 1000000000) * 1000000000; static const u256 Vether = ((((u256(1000000000) * 1000000000) * 1000000000) * 1000000000) * 1000000000) * 1000000; static const u256 Dether = ((((u256(1000000000) * 1000000000) * 1000000000) * 1000000000) * 1000000000) * 1000; static const u256 Nether = (((u256(1000000000) * 1000000000) * 1000000000) * 1000000000) * 1000000000; static const u256 Yether = (((u256(1000000000) * 1000000000) * 1000000000) * 1000000000) * 1000000; static const u256 Zether = (((u256(1000000000) * 1000000000) * 1000000000) * 1000000000) * 1000; static const u256 Eether = ((u256(1000000000) * 1000000000) * 1000000000) * 1000000000; static const u256 Pether = ((u256(1000000000) * 1000000000) * 1000000000) * 1000000; static const u256 Tether = ((u256(1000000000) * 1000000000) * 1000000000) * 1000; static const u256 Gether = (u256(1000000000) * 1000000000) * 1000000000; static const u256 Mether = (u256(1000000000) * 1000000000) * 1000000; static const u256 Kether = (u256(1000000000) * 1000000000) * 1000; static const u256 ether = u256(1000000000) * 1000000000; static const u256 finney = u256(1000000000) * 1000000; static const u256 szabo = u256(1000000000) * 1000; static const u256 Gwei = u256(1000000000); static const u256 Mwei = u256(1000000); static const u256 Kwei = u256(1000); static const u256 wei = u256(1); // Stream IO template struct StreamOut { static S& bypass(S& _out, T const& _t) { _out << _t; return _out; } }; template struct StreamOut { static S& bypass(S& _out, uint8_t const& _t) { _out << (int)_t; return _out; } }; template inline S& streamout(S& _out, std::vector const& _e) { _out << "["; if (!_e.empty()) { StreamOut::bypass(_out, _e.front()); for (auto i = ++_e.begin(); i != _e.end(); ++i) StreamOut::bypass(_out << ",", *i); } _out << "]"; return _out; } template inline std::ostream& operator<<(std::ostream& _out, std::vector const& _e) { streamout(_out, _e); return _out; } template inline S& streamout(S& _out, std::array const& _e) { _out << "["; if (!_e.empty()) { StreamOut::bypass(_out, _e.front()); auto i = _e.begin(); for (++i; i != _e.end(); ++i) StreamOut::bypass(_out << ",", *i); } _out << "]"; return _out; } template inline std::ostream& operator<<(std::ostream& _out, std::array const& _e) { streamout(_out, _e); return _out; } template inline S& streamout(S& _out, std::array const& _e) { _out << "["; if (!_e.empty()) { StreamOut::bypass(_out, _e.front()); auto i = _e.begin(); for (++i; i != _e.end(); ++i) StreamOut::bypass(_out << ",", *i); } _out << "]"; return _out; } template inline std::ostream& operator<<(std::ostream& _out, std::array const& _e) { streamout(_out, _e); return _out; } template inline S& streamout(S& _out, std::list const& _e) { _out << "["; if (!_e.empty()) { _out << _e.front(); for (auto i = ++_e.begin(); i != _e.end(); ++i) _out << "," << *i; } _out << "]"; return _out; } template inline std::ostream& operator<<(std::ostream& _out, std::list const& _e) { streamout(_out, _e); return _out; } template inline S& streamout(S& _out, std::pair const& _e) { _out << "(" << _e.first << "," << _e.second << ")"; return _out; } template inline std::ostream& operator<<(std::ostream& _out, std::pair const& _e) { streamout(_out, _e); return _out; } template inline S& streamout(S& _out, std::tuple const& _t) { _out << "(" << std::get<0>(_t) << "," << std::get<1>(_t) << "," << std::get<2>(_t) << ")"; return _out; } template inline std::ostream& operator<<(std::ostream& _out, std::tuple const& _e) { streamout(_out, _e); return _out; } template S& streamout(S& _out, std::map const& _v) { if (_v.empty()) return _out << "{}"; int i = 0; for (auto p: _v) _out << (!(i++) ? "{ " : "; ") << p.first << " => " << p.second; return _out << " }"; } template inline std::ostream& operator<<(std::ostream& _out, std::map const& _e) { streamout(_out, _e); return _out; } template S& streamout(S& _out, std::unordered_map const& _v) { if (_v.empty()) return _out << "{}"; int i = 0; for (auto p: _v) _out << (!(i++) ? "{ " : "; ") << p.first << " => " << p.second; return _out << " }"; } template inline std::ostream& operator<<(std::ostream& _out, std::unordered_map const& _e) { streamout(_out, _e); return _out; } template S& streamout(S& _out, std::set const& _v) { if (_v.empty()) return _out << "{}"; int i = 0; for (auto p: _v) _out << (!(i++) ? "{ " : ", ") << p; return _out << " }"; } template inline std::ostream& operator<<(std::ostream& _out, std::set const& _e) { streamout(_out, _e); return _out; } template S& streamout(S& _out, std::multiset const& _v) { if (_v.empty()) return _out << "{}"; int i = 0; for (auto p: _v) _out << (!(i++) ? "{ " : ", ") << p; return _out << " }"; } template inline std::ostream& operator<<(std::ostream& _out, std::multiset const& _e) { streamout(_out, _e); return _out; } template S& streamout(S& _out, std::multimap const& _v) { if (_v.empty()) return _out << "{}"; T l; int i = 0; for (auto p: _v) if (!(i++)) _out << "{ " << (l = p.first) << " => " << p.second; else if (l == p.first) _out << ", " << p.second; else _out << "; " << (l = p.first) << " => " << p.second; return _out << " }"; } template inline std::ostream& operator<<(std::ostream& _out, std::multimap const& _e) { streamout(_out, _e); return _out; } template _S& operator<<(_S& _out, std::shared_ptr<_T> const& _p) { if (_p) _out << "@" << (*_p); else _out << "nullptr"; return _out; } }