/*
This file is part of cpp-ethereum.
cpp-ethereum is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
cpp-ethereum is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with cpp-ethereum. If not, see .
*/
/** @file fuzzHelper.cpp
* @author Dimitry Khokhlov
* @date 2015
*/
#include "fuzzHelper.h"
#include
#include
#include
#include
namespace dev
{
namespace test
{
boost::random::mt19937 RandomCode::gen;
boostIntDistrib RandomCode::opCodeDist = boostIntDistrib (0, 255);
boostIntDistrib RandomCode::opLengDist = boostIntDistrib (1, 32);
boostIntDistrib RandomCode::uniIntDist = boostIntDistrib (0, 0x7fffffff);
boostUint64Distrib RandomCode::uInt64Dist = boostUint64Distrib (0, std::numeric_limits::max());
boostIntGenerator RandomCode::randOpCodeGen = boostIntGenerator(gen, opCodeDist);
boostIntGenerator RandomCode::randOpLengGen = boostIntGenerator(gen, opLengDist);
boostIntGenerator RandomCode::randUniIntGen = boostIntGenerator(gen, uniIntDist);
boostUInt64Generator RandomCode::randUInt64Gen = boostUInt64Generator(gen, uInt64Dist);
int RandomCode::recursiveRLP(std::string& _result, int _depth, std::string& _debug)
{
bool genValidRlp = true;
int bugProbability = randUniIntGen() % 100;
if (bugProbability < 80)
genValidRlp = false;
if (_depth > 1)
{
//create rlp blocks
int size = 1 + randUniIntGen() % 4;
for (auto i = 0; i < size; i++)
{
std::string blockstr;
std::string blockDebug;
recursiveRLP(blockstr, _depth - 1, blockDebug);
_result += blockstr;
_debug += blockDebug;
}
//make rlp header
int length = _result.size() / 2;
std::string header;
int rtype = 0;
int rnd = randUniIntGen() % 100;
if (rnd < 10)
{
//make header as array
if (length <= 55)
{
header = toCompactHex(128 + length);
rtype = 1;
}
else
{
std::string hexlength = toCompactHex(length);
header = toCompactHex(183 + hexlength.size() / 2) + hexlength;
rtype = 2;
}
}
else
{
//make header as list
if (length <= 55)
{
header = toCompactHex(192 + length);
rtype = 3;
}
else
{
std::string hexlength = toCompactHex(length, HexPrefix::DontAdd, 1);
header = toCompactHex(247 + hexlength.size() / 2) + hexlength;
rtype = 4;
}
}
_result = header + _result;
_debug = "[" + header + "(" + toString(length) + "){" + toString(rtype) + "}]" + _debug;
return _result.size() / 2;
}
if (_depth == 1)
{
bool genbug = false;
bool genbug2 = false;
int bugProbability = randUniIntGen() % 100;
if (bugProbability < 50 && !genValidRlp)
genbug = true;
bugProbability = randUniIntGen() % 100; //more randomness
if (bugProbability < 50 && !genValidRlp)
genbug2 = true;
std::string emptyZeros = genValidRlp ? "" : genbug ? "00" : "";
std::string emptyZeros2 = genValidRlp ? "" : genbug2 ? "00" : "";
int rnd = randUniIntGen() % 5;
switch (rnd)
{
case 0:
{
//single byte [0x00, 0x7f]
std::string rlp = emptyZeros + toCompactHex(genbug ? randUniIntGen() % 255 : randUniIntGen() % 128, HexPrefix::DontAdd, 1);
_result.insert(0, rlp);
_debug.insert(0, "[" + rlp + "]");
return 1;
}
case 1:
{
//string 0-55 [0x80, 0xb7] + string
int len = genbug ? randUniIntGen() % 255 : randUniIntGen() % 55;
std::string hex = rndByteSequence(len);
if (len == 1)
if (genValidRlp && fromHex(hex)[0] < 128)
hex = toCompactHex((u64)128);
_result.insert(0, toCompactHex(128 + len) + emptyZeros + hex);
_debug.insert(0, "[" + toCompactHex(128 + len) + "(" + toString(len) + ")]" + emptyZeros + hex);
return len + 1;
}
case 2:
{
//string more 55 [0xb8, 0xbf] + length + string
int len = randUniIntGen() % 100;
if (len < 56 && genValidRlp)
len = 56;
std::string hex = rndByteSequence(len);
std::string hexlen = emptyZeros2 + toCompactHex(len, HexPrefix::DontAdd, 1);
std::string rlpblock = toCompactHex(183 + hexlen.size() / 2) + hexlen + emptyZeros + hex;
_debug.insert(0, "[" + toCompactHex(183 + hexlen.size() / 2) + hexlen + "(" + toString(len) + "){2}]" + emptyZeros + hex);
_result.insert(0, rlpblock);
return rlpblock.size() / 2;
}
case 3:
{
//list 0-55 [0xc0, 0xf7] + data
int len = genbug ? randUniIntGen() % 255 : randUniIntGen() % 55;
std::string hex = emptyZeros + rndByteSequence(len);
_result.insert(0, toCompactHex(192 + len) + hex);
_debug.insert(0, "[" + toCompactHex(192 + len) + "(" + toString(len) + "){3}]" + hex);
return len + 1;
}
case 4:
{
//list more 55 [0xf8, 0xff] + length + data
int len = randUniIntGen() % 100;
if (len < 56 && genValidRlp)
len = 56;
std::string hexlen = emptyZeros2 + toCompactHex(len, HexPrefix::DontAdd, 1);
std::string rlpblock = toCompactHex(247 + hexlen.size() / 2) + hexlen + emptyZeros + rndByteSequence(len);
_debug.insert(0, "[" + toCompactHex(247 + hexlen.size() / 2) + hexlen + "(" + toString(len) + "){4}]" + emptyZeros + rndByteSequence(len));
_result.insert(0, rlpblock);
return rlpblock.size() / 2;
}
}
}
return 0;
}
std::string RandomCode::rndRLPSequence(int _depth, std::string& _debug)
{
refreshSeed();
std::string hash;
_depth = std::min(std::max(1, _depth), 7); //limit depth to avoid overkill
recursiveRLP(hash, _depth, _debug);
return hash;
}
std::string RandomCode::rndByteSequence(int _length, SizeStrictness _sizeType)
{
refreshSeed();
std::string hash = "";
_length = (_sizeType == SizeStrictness::Strict) ? std::max(0, _length) : randomUniInt() % _length;
for (auto i = 0; i < _length; i++)
{
uint8_t byte = randOpCodeGen();
hash += toCompactHex(byte, HexPrefix::DontAdd, 1);
}
return hash;
}
//generate smart random code
std::string RandomCode::generate(int _maxOpNumber, RandomCodeOptions _options)
{
refreshSeed();
std::string code;
//random opCode amount
boostIntDistrib sizeDist (0, _maxOpNumber);
boostIntGenerator rndSizeGen(gen, sizeDist);
int size = (int)rndSizeGen();
boostWeightGenerator randOpCodeWeight (gen, _options.opCodeProbability);
bool weightsDefined = _options.opCodeProbability.probabilities().size() == 255;
for (auto i = 0; i < size; i++)
{
uint8_t opcode = weightsDefined ? randOpCodeWeight() : randOpCodeGen();
dev::eth::InstructionInfo info = dev::eth::instructionInfo((dev::eth::Instruction) opcode);
if (info.name.find("INVALID_INSTRUCTION") != std::string::npos)
{
//Byte code is yet not implemented
if (_options.useUndefinedOpCodes == false)
{
i--;
continue;
}
}
else
{
if (info.name.find("PUSH") != std::string::npos)
code += toCompactHex(opcode);
code += fillArguments((dev::eth::Instruction) opcode, _options);
}
if (info.name.find("PUSH") == std::string::npos)
{
std::string byte = toCompactHex(opcode);
code += (byte == "") ? "00" : byte;
}
}
return code;
}
std::string RandomCode::randomUniIntHex(u256 _maxVal)
{
if (_maxVal == 0)
_maxVal = std::numeric_limits::max();
refreshSeed();
int rand = randUniIntGen() % 100;
if (rand < 50)
return "0x" + toCompactHex((u256)randUniIntGen() % _maxVal);
return "0x" + toCompactHex((u256)randUInt64Gen() % _maxVal);
}
int RandomCode::randomUniInt()
{
refreshSeed();
return (int)randUniIntGen();
}
void RandomCode::refreshSeed()
{
auto now = std::chrono::steady_clock::now().time_since_epoch();
auto timeSinceEpoch = std::chrono::duration_cast(now).count();
gen.seed(static_cast(timeSinceEpoch));
}
std::string RandomCode::getPushCode(std::string const& _hex)
{
int length = _hex.length() / 2;
int pushCode = 96 + length - 1;
return toCompactHex(pushCode) + _hex;
}
std::string RandomCode::getPushCode(int _value)
{
std::string hexString = toCompactHex(_value);
return getPushCode(hexString);
}
std::string RandomCode::fillArguments(dev::eth::Instruction _opcode, RandomCodeOptions const& _options)
{
dev::eth::InstructionInfo info = dev::eth::instructionInfo(_opcode);
std::string code;
bool smart = false;
unsigned num = info.args;
int rand = randUniIntGen() % 100;
if (rand < _options.smartCodeProbability)
smart = true;
if (smart)
{
//PUSH1 ... PUSH32
if (dev::eth::Instruction::PUSH1 <= _opcode && _opcode <= dev::eth::Instruction::PUSH32)
{
code += rndByteSequence(int(_opcode) - int(dev::eth::Instruction::PUSH1) + 1);
return code;
}
//SWAP1 ... SWAP16 || DUP1 ... DUP16
bool isSWAP = (dev::eth::Instruction::SWAP1 <= _opcode && _opcode <= dev::eth::Instruction::SWAP16);
bool isDUP = (dev::eth::Instruction::DUP1 <= _opcode && _opcode <= dev::eth::Instruction::DUP16);
if (isSWAP || isDUP)
{
int times = 0;
if (isSWAP)
times = int(_opcode) - int(dev::eth::Instruction::SWAP1) + 2;
else
if (isDUP)
times = int(_opcode) - int(dev::eth::Instruction::DUP1) + 1;
for (int i = 0; i < times; i ++)
code += getPushCode(randUniIntGen() % 32);
return code;
}
switch (_opcode)
{
case dev::eth::Instruction::CREATE:
//(CREATE value mem1 mem2)
code += getPushCode(randUniIntGen() % 128); //memlen1
code += getPushCode(randUniIntGen() % 32); //memlen1
code += getPushCode(randUniIntGen()); //value
break;
case dev::eth::Instruction::CALL:
case dev::eth::Instruction::CALLCODE:
//(CALL gaslimit address value memstart1 memlen1 memstart2 memlen2)
//(CALLCODE gaslimit address value memstart1 memlen1 memstart2 memlen2)
code += getPushCode(randUniIntGen() % 128); //memlen2
code += getPushCode(randUniIntGen() % 32); //memstart2
code += getPushCode(randUniIntGen() % 128); //memlen1
code += getPushCode(randUniIntGen() % 32); //memlen1
code += getPushCode(randUniIntGen()); //value
code += getPushCode(toString(_options.getRandomAddress()));//address
code += getPushCode(randUniIntGen()); //gaslimit
break;
case dev::eth::Instruction::SUICIDE: //(SUICIDE address)
code += getPushCode(toString(_options.getRandomAddress()));
break;
case dev::eth::Instruction::RETURN: //(RETURN memlen1 memlen2)
code += getPushCode(randUniIntGen() % 128); //memlen1
code += getPushCode(randUniIntGen() % 32); //memlen1
break;
default:
smart = false;
}
}
if (smart == false)
for (unsigned i = 0; i < num; i++)
{
//generate random parameters
int length = randOpLengGen();
code += getPushCode(rndByteSequence(length));
}
return code;
}
//Ramdom Code Options
RandomCodeOptions::RandomCodeOptions() : useUndefinedOpCodes(false), smartCodeProbability(50)
{
//each op code with same weight-probability
for (auto i = 0; i < 255; i++)
mapWeights.insert(std::pair(i, 50));
setWeights();
}
void RandomCodeOptions::setWeight(dev::eth::Instruction _opCode, int _weight)
{
mapWeights.at((int)_opCode) = _weight;
setWeights();
}
void RandomCodeOptions::addAddress(dev::Address const& _address)
{
addressList.push_back(_address);
}
dev::Address RandomCodeOptions::getRandomAddress() const
{
if (addressList.size() > 0)
{
int index = RandomCode::randomUniInt() % addressList.size();
return addressList[index];
}
return Address(RandomCode::rndByteSequence(20));
}
void RandomCodeOptions::setWeights()
{
std::vector weights;
for (auto const& element: mapWeights)
weights.push_back(element.second);
opCodeProbability = boostDescreteDistrib(weights);
}
BOOST_AUTO_TEST_SUITE(RandomCodeTests)
BOOST_AUTO_TEST_CASE(rndCode)
{
std::string code;
cnote << "Testing Random Code: ";
try
{
code = dev::test::RandomCode::generate(10);
}
catch(...)
{
BOOST_ERROR("Exception thrown when generating random code!");
}
cnote << code;
}
BOOST_AUTO_TEST_SUITE_END()
}
}