/*
This file is part of cpp-ethereum.
cpp-ethereum is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
cpp-ethereum is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with cpp-ethereum. If not, see .
*/
/** @file Common.h
* @author Alex Leverington
* @author Gav Wood
* @date 2014
*
* Ethereum-specific data structures & algorithms.
*/
#pragma once
#include
#include
#include
#include
#include
namespace dev
{
using Secret = SecureFixedHash<32>;
/// A public key: 64 bytes.
/// @NOTE This is not endian-specific; it's just a bunch of bytes.
using Public = h512;
/// A signature: 65 bytes: r: [0, 32), s: [32, 64), v: 64.
/// @NOTE This is not endian-specific; it's just a bunch of bytes.
using Signature = h520;
struct SignatureStruct
{
SignatureStruct() = default;
SignatureStruct(Signature const& _s) { *(h520*)this = _s; }
SignatureStruct(h256 const& _r, h256 const& _s, byte _v): r(_r), s(_s), v(_v) {}
operator Signature() const { return *(h520 const*)this; }
/// @returns true if r,s,v values are valid, otherwise false
bool isValid() const noexcept;
/// @returns the public part of the key that signed @a _hash to give this sig.
Public recover(h256 const& _hash) const;
h256 r;
h256 s;
byte v = 0;
};
/// An Ethereum address: 20 bytes.
/// @NOTE This is not endian-specific; it's just a bunch of bytes.
using Address = h160;
/// The zero address.
extern Address ZeroAddress;
/// A vector of Ethereum addresses.
using Addresses = h160s;
/// A hash set of Ethereum addresses.
using AddressHash = std::unordered_set;
/// A vector of secrets.
using Secrets = std::vector;
/// Convert a secret key into the public key equivalent.
Public toPublic(Secret const& _secret);
/// Convert a public key to address.
Address toAddress(Public const& _public);
/// Convert a secret key into address of public key equivalent.
/// @returns 0 if it's not a valid secret key.
Address toAddress(Secret const& _secret);
// Convert transaction from and nonce to address.
Address toAddress(Address const& _from, u256 const& _nonce);
/// Encrypts plain text using Public key.
void encrypt(Public const& _k, bytesConstRef _plain, bytes& o_cipher);
/// Decrypts cipher using Secret key.
bool decrypt(Secret const& _k, bytesConstRef _cipher, bytes& o_plaintext);
/// Symmetric encryption.
void encryptSym(Secret const& _k, bytesConstRef _plain, bytes& o_cipher);
/// Symmetric decryption.
bool decryptSym(Secret const& _k, bytesConstRef _cipher, bytes& o_plaintext);
/// Encrypt payload using ECIES standard with AES128-CTR.
void encryptECIES(Public const& _k, bytesConstRef _plain, bytes& o_cipher);
/// Decrypt payload using ECIES standard with AES128-CTR.
bool decryptECIES(Secret const& _k, bytesConstRef _cipher, bytes& o_plaintext);
/// Encrypts payload with random IV/ctr using AES128-CTR.
std::pair encryptSymNoAuth(SecureFixedHash<16> const& _k, bytesConstRef _plain);
/// Encrypts payload with specified IV/ctr using AES128-CTR.
bytes encryptAES128CTR(bytesConstRef _k, h128 const& _iv, bytesConstRef _plain);
/// Decrypts payload with specified IV/ctr using AES128-CTR.
bytesSec decryptAES128CTR(bytesConstRef _k, h128 const& _iv, bytesConstRef _cipher);
/// Encrypts payload with specified IV/ctr using AES128-CTR.
inline bytes encryptSymNoAuth(SecureFixedHash<16> const& _k, h128 const& _iv, bytesConstRef _plain) { return encryptAES128CTR(_k.ref(), _iv, _plain); }
inline bytes encryptSymNoAuth(SecureFixedHash<32> const& _k, h128 const& _iv, bytesConstRef _plain) { return encryptAES128CTR(_k.ref(), _iv, _plain); }
/// Decrypts payload with specified IV/ctr using AES128-CTR.
inline bytesSec decryptSymNoAuth(SecureFixedHash<16> const& _k, h128 const& _iv, bytesConstRef _cipher) { return decryptAES128CTR(_k.ref(), _iv, _cipher); }
inline bytesSec decryptSymNoAuth(SecureFixedHash<32> const& _k, h128 const& _iv, bytesConstRef _cipher) { return decryptAES128CTR(_k.ref(), _iv, _cipher); }
/// Recovers Public key from signed message hash.
Public recover(Signature const& _sig, h256 const& _hash);
/// Returns siganture of message hash.
Signature sign(Secret const& _k, h256 const& _hash);
/// Verify signature.
bool verify(Public const& _k, Signature const& _s, h256 const& _hash);
/// Derive key via PBKDF2.
bytesSec pbkdf2(std::string const& _pass, bytes const& _salt, unsigned _iterations, unsigned _dkLen = 32);
/// Derive key via Scrypt.
bytesSec scrypt(std::string const& _pass, bytes const& _salt, uint64_t _n, uint32_t _r, uint32_t _p, unsigned _dkLen);
/// Simple class that represents a "key pair".
/// All of the data of the class can be regenerated from the secret key (m_secret) alone.
/// Actually stores a tuplet of secret, public and address (the right 160-bits of the public).
class KeyPair
{
public:
/// Null constructor.
KeyPair() {}
/// Normal constructor - populates object from the given secret key.
KeyPair(Secret const& _k) { populateFromSecret(_k); }
/// Create a new, randomly generated object.
static KeyPair create();
/// Create from an encrypted seed.
static KeyPair fromEncryptedSeed(bytesConstRef _seed, std::string const& _password);
/// Retrieve the secret key.
Secret const& secret() const { return m_secret; }
/// Retrieve the secret key.
Secret const& sec() const { return m_secret; }
/// Retrieve the public key.
Public const& pub() const { return m_public; }
/// Retrieve the associated address of the public key.
Address const& address() const { return m_address; }
bool operator==(KeyPair const& _c) const { return m_public == _c.m_public; }
bool operator!=(KeyPair const& _c) const { return m_public != _c.m_public; }
private:
void populateFromSecret(Secret const& _k);
Secret m_secret;
Public m_public;
Address m_address;
};
namespace crypto
{
DEV_SIMPLE_EXCEPTION(InvalidState);
/// Key derivation
h256 kdf(Secret const& _priv, h256 const& _hash);
/**
* @brief Generator for non-repeating nonce material.
* The Nonce class should only be used when a non-repeating nonce
* is required and, in its current form, not recommended for signatures.
* This is primarily because the key-material for signatures is
* encrypted on disk whereas the seed for Nonce is not.
* Thus, Nonce's primary intended use at this time is for networking
* where the key is also stored in plaintext.
*/
class Nonce
{
public:
/// Returns the next nonce (might be read from a file).
static Secret get() { static Nonce s; return s.next(); }
private:
Nonce() = default;
/// @returns the next nonce.
Secret next();
std::mutex x_value;
Secret m_value;
};
}
}