// Copyright (c) 2013 Pieter Wuille // Distributed under the MIT/X11 software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef _SECP256K1_ECMULT_IMPL_H_ #define _SECP256K1_ECMULT_IMPL_H_ #include "../num.h" #include "../group.h" #include "../ecmult.h" // optimal for 128-bit and 256-bit exponents. #define WINDOW_A 5 // larger numbers may result in slightly better performance, at the cost of // exponentially larger precomputed tables. WINDOW_G == 14 results in 640 KiB. #define WINDOW_G 14 /** Fill a table 'pre' with precomputed odd multiples of a. W determines the size of the table. * pre will contains the values [1*a,3*a,5*a,...,(2^(w-1)-1)*a], so it needs place for * 2^(w-2) entries. * * There are two versions of this function: * - secp256k1_ecmult_precomp_wnaf_gej, which operates on group elements in jacobian notation, * fast to precompute, but slower to use in later additions. * - secp256k1_ecmult_precomp_wnaf_ge, which operates on group elements in affine notations, * (much) slower to precompute, but a bit faster to use in later additions. * To compute a*P + b*G, we use the jacobian version for P, and the affine version for G, as * G is constant, so it only needs to be done once in advance. */ void static secp256k1_ecmult_table_precomp_gej(secp256k1_gej_t *pre, const secp256k1_gej_t *a, int w) { pre[0] = *a; secp256k1_gej_t d; secp256k1_gej_double(&d, &pre[0]); for (int i=1; i<(1 << (w-2)); i++) secp256k1_gej_add(&pre[i], &d, &pre[i-1]); } void static secp256k1_ecmult_table_precomp_ge(secp256k1_ge_t *pre, const secp256k1_ge_t *a, int w) { pre[0] = *a; secp256k1_gej_t x; secp256k1_gej_set_ge(&x, a); secp256k1_gej_t d; secp256k1_gej_double(&d, &x); for (int i=1; i<(1 << (w-2)); i++) { secp256k1_gej_add_ge(&x, &d, &pre[i-1]); secp256k1_ge_set_gej(&pre[i], &x); } } /** The number of entries a table with precomputed multiples needs to have. */ #define ECMULT_TABLE_SIZE(w) (1 << ((w)-2)) /** The following two macro retrieves a particular odd multiple from a table * of precomputed multiples. */ #define ECMULT_TABLE_GET(r,pre,n,w,neg) do { \ assert(((n) & 1) == 1); \ assert((n) >= -((1 << ((w)-1)) - 1)); \ assert((n) <= ((1 << ((w)-1)) - 1)); \ if ((n) > 0) \ *(r) = (pre)[((n)-1)/2]; \ else \ (neg)((r), &(pre)[(-(n)-1)/2]); \ } while(0) #define ECMULT_TABLE_GET_GEJ(r,pre,n,w) ECMULT_TABLE_GET((r),(pre),(n),(w),secp256k1_gej_neg) #define ECMULT_TABLE_GET_GE(r,pre,n,w) ECMULT_TABLE_GET((r),(pre),(n),(w),secp256k1_ge_neg) typedef struct { secp256k1_ge_t pre_g[ECMULT_TABLE_SIZE(WINDOW_G)]; // odd multiples of the generator secp256k1_ge_t pre_g_128[ECMULT_TABLE_SIZE(WINDOW_G)]; // odd multiples of 2^128*generator secp256k1_ge_t prec[64][16]; // prec[j][i] = 16^j * (i+1) * G secp256k1_ge_t fin; // -(sum(prec[j][0], j=0..63)) } secp256k1_ecmult_consts_t; static const secp256k1_ecmult_consts_t *secp256k1_ecmult_consts = NULL; static void secp256k1_ecmult_start(void) { if (secp256k1_ecmult_consts != NULL) return; secp256k1_ecmult_consts_t *ret = (secp256k1_ecmult_consts_t*)malloc(sizeof(secp256k1_ecmult_consts_t)); secp256k1_ecmult_consts = ret; // get the generator const secp256k1_ge_t *g = &secp256k1_ge_consts->g; // calculate 2^128*generator secp256k1_gej_t g_128j; secp256k1_gej_set_ge(&g_128j, g); for (int i=0; i<128; i++) secp256k1_gej_double(&g_128j, &g_128j); secp256k1_ge_t g_128; secp256k1_ge_set_gej(&g_128, &g_128j); // precompute the tables with odd multiples secp256k1_ecmult_table_precomp_ge(ret->pre_g, g, WINDOW_G); secp256k1_ecmult_table_precomp_ge(ret->pre_g_128, &g_128, WINDOW_G); // compute prec and fin secp256k1_gej_t gg; secp256k1_gej_set_ge(&gg, g); secp256k1_ge_t ad = *g; secp256k1_gej_t fn; secp256k1_gej_set_infinity(&fn); for (int j=0; j<64; j++) { secp256k1_ge_set_gej(&ret->prec[j][0], &gg); secp256k1_gej_add(&fn, &fn, &gg); for (int i=1; i<16; i++) { secp256k1_gej_add_ge(&gg, &gg, &ad); secp256k1_ge_set_gej(&ret->prec[j][i], &gg); } ad = ret->prec[j][15]; } secp256k1_ge_set_gej(&ret->fin, &fn); secp256k1_ge_neg(&ret->fin, &ret->fin); } static void secp256k1_ecmult_stop(void) { if (secp256k1_ecmult_consts == NULL) return; secp256k1_ecmult_consts_t *c = (secp256k1_ecmult_consts_t*)secp256k1_ecmult_consts; free(c); secp256k1_ecmult_consts = NULL; } /** Convert a number to WNAF notation. The number becomes represented by sum(2^i * wnaf[i], i=0..bits), * with the following guarantees: * - each wnaf[i] is either 0, or an odd integer between -(1<<(w-1) - 1) and (1<<(w-1) - 1) * - two non-zero entries in wnaf are separated by at least w-1 zeroes. * - the index of the highest non-zero entry in wnaf (=return value-1) is at most bits, where * bits is the number of bits necessary to represent the absolute value of the input. */ static int secp256k1_ecmult_wnaf(int *wnaf, const secp256k1_num_t *a, int w) { int ret = 0; int zeroes = 0; secp256k1_num_t x; secp256k1_num_init(&x); secp256k1_num_copy(&x, a); int sign = 1; if (secp256k1_num_is_neg(&x)) { sign = -1; secp256k1_num_negate(&x); } while (!secp256k1_num_is_zero(&x)) { while (!secp256k1_num_is_odd(&x)) { zeroes++; secp256k1_num_shift(&x, 1); } int word = secp256k1_num_shift(&x, w); while (zeroes) { wnaf[ret++] = 0; zeroes--; } if (word & (1 << (w-1))) { secp256k1_num_inc(&x); wnaf[ret++] = sign * (word - (1 << w)); } else { wnaf[ret++] = sign * word; } zeroes = w-1; } secp256k1_num_free(&x); return ret; } void static secp256k1_ecmult_gen(secp256k1_gej_t *r, const secp256k1_num_t *gn) { secp256k1_num_t n; secp256k1_num_init(&n); secp256k1_num_copy(&n, gn); const secp256k1_ecmult_consts_t *c = secp256k1_ecmult_consts; secp256k1_gej_set_ge(r, &c->prec[0][secp256k1_num_shift(&n, 4)]); for (int j=1; j<64; j++) secp256k1_gej_add_ge(r, r, &c->prec[j][secp256k1_num_shift(&n, 4)]); secp256k1_num_free(&n); secp256k1_gej_add_ge(r, r, &c->fin); } void static secp256k1_ecmult(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_num_t *na, const secp256k1_num_t *ng) { const secp256k1_ecmult_consts_t *c = secp256k1_ecmult_consts; #ifdef USE_ENDOMORPHISM secp256k1_num_t na_1, na_lam; secp256k1_num_init(&na_1); secp256k1_num_init(&na_lam); // split na into na_1 and na_lam (where na = na_1 + na_lam*lambda, and na_1 and na_lam are ~128 bit) secp256k1_gej_split_exp(&na_1, &na_lam, na); // build wnaf representation for na_1 and na_lam. int wnaf_na_1[129]; int bits_na_1 = secp256k1_ecmult_wnaf(wnaf_na_1, &na_1, WINDOW_A); int wnaf_na_lam[129]; int bits_na_lam = secp256k1_ecmult_wnaf(wnaf_na_lam, &na_lam, WINDOW_A); int bits = bits_na_1; if (bits_na_lam > bits) bits = bits_na_lam; // calculate a_lam = a*lambda secp256k1_gej_t a_lam; secp256k1_gej_mul_lambda(&a_lam, a); // calculate odd multiples of a_lam secp256k1_gej_t pre_a_lam[ECMULT_TABLE_SIZE(WINDOW_A)]; secp256k1_ecmult_table_precomp_gej(pre_a_lam, &a_lam, WINDOW_A); #else // build wnaf representation for na. int wnaf_na[257]; int bits_na = secp256k1_ecmult_wnaf(wnaf_na, na, WINDOW_A); int bits = bits_na; #endif // calculate odd multiples of a secp256k1_gej_t pre_a[ECMULT_TABLE_SIZE(WINDOW_A)]; secp256k1_ecmult_table_precomp_gej(pre_a, a, WINDOW_A); // Splitted G factors. secp256k1_num_t ng_1, ng_128; secp256k1_num_init(&ng_1); secp256k1_num_init(&ng_128); // split ng into ng_1 and ng_128 (where gn = gn_1 + gn_128*2^128, and gn_1 and gn_128 are ~128 bit) secp256k1_num_split(&ng_1, &ng_128, ng, 128); // Build wnaf representation for ng_1 and ng_128 int wnaf_ng_1[129]; int bits_ng_1 = secp256k1_ecmult_wnaf(wnaf_ng_1, &ng_1, WINDOW_G); int wnaf_ng_128[129]; int bits_ng_128 = secp256k1_ecmult_wnaf(wnaf_ng_128, &ng_128, WINDOW_G); if (bits_ng_1 > bits) bits = bits_ng_1; if (bits_ng_128 > bits) bits = bits_ng_128; secp256k1_gej_set_infinity(r); secp256k1_gej_t tmpj; secp256k1_ge_t tmpa; for (int i=bits-1; i>=0; i--) { secp256k1_gej_double(r, r); int n; #ifdef USE_ENDOMORPHISM if (i < bits_na_1 && (n = wnaf_na_1[i])) { ECMULT_TABLE_GET_GEJ(&tmpj, pre_a, n, WINDOW_A); secp256k1_gej_add(r, r, &tmpj); } if (i < bits_na_lam && (n = wnaf_na_lam[i])) { ECMULT_TABLE_GET_GEJ(&tmpj, pre_a_lam, n, WINDOW_A); secp256k1_gej_add(r, r, &tmpj); } #else if (i < bits_na && (n = wnaf_na[i])) { ECMULT_TABLE_GET_GEJ(&tmpj, pre_a, n, WINDOW_A); secp256k1_gej_add(r, r, &tmpj); } #endif if (i < bits_ng_1 && (n = wnaf_ng_1[i])) { ECMULT_TABLE_GET_GE(&tmpa, c->pre_g, n, WINDOW_G); secp256k1_gej_add_ge(r, r, &tmpa); } if (i < bits_ng_128 && (n = wnaf_ng_128[i])) { ECMULT_TABLE_GET_GE(&tmpa, c->pre_g_128, n, WINDOW_G); secp256k1_gej_add_ge(r, r, &tmpa); } } #ifdef USE_ENDOMORPHISM secp256k1_num_free(&na_1); secp256k1_num_free(&na_lam); #endif secp256k1_num_free(&ng_1); secp256k1_num_free(&ng_128); } #endif