/* This file is part of cpp-ethereum. cpp-ethereum is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. cpp-ethereum is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with cpp-ethereum. If not, see . */ /** @file Client.cpp * @author Gav Wood * @date 2014 */ #include "Client.h" #include #include #include #include #include #include #include "Defaults.h" #include "Executive.h" #include "EthereumHost.h" using namespace std; using namespace dev; using namespace dev::eth; using namespace p2p; VersionChecker::VersionChecker(string const& _dbPath): m_path(_dbPath.size() ? _dbPath : Defaults::dbPath()) { auto protocolContents = contents(m_path + "/protocol"); auto databaseContents = contents(m_path + "/database"); m_ok = RLP(protocolContents).toInt(RLP::LaisezFaire) == c_protocolVersion && RLP(databaseContents).toInt(RLP::LaisezFaire) == c_databaseVersion; } void VersionChecker::setOk() { if (!m_ok) { try { boost::filesystem::create_directory(m_path); } catch (...) { cwarn << "Unhandled exception! Failed to create directory: " << m_path << "\n" << boost::current_exception_diagnostic_information(); } writeFile(m_path + "/protocol", rlp(c_protocolVersion)); writeFile(m_path + "/database", rlp(c_databaseVersion)); } } void BasicGasPricer::update(BlockChain const& _bc) { unsigned c = 0; h256 p = _bc.currentHash(); m_gasPerBlock = _bc.info(p).gasLimit; map dist; unsigned total = 0; while (c < 1000 && p) { BlockInfo bi = _bc.info(p); if (bi.transactionsRoot != EmptyTrie) { auto bb = _bc.block(p); RLP r(bb); BlockReceipts brs(_bc.receipts(bi.hash)); for (unsigned i = 0; i < r[1].size(); ++i) { auto gu = brs.receipts[i].gasUsed(); dist[Transaction(r[1][i].data(), CheckSignature::None).gasPrice()] += (unsigned)brs.receipts[i].gasUsed(); total += (unsigned)gu; } } p = bi.parentHash; ++c; } if (total > 0) { unsigned t = 0; unsigned q = 1; m_octiles[0] = dist.begin()->first; for (auto const& i: dist) { for (; t <= total * q / 8 && t + i.second > total * q / 8; ++q) m_octiles[q] = i.first; if (q > 7) break; } m_octiles[8] = dist.rbegin()->first; } } Client::Client(p2p::Host* _extNet, std::string const& _dbPath, bool _forceClean, u256 _networkId, int _miners): Worker("eth"), m_vc(_dbPath), m_bc(_dbPath, !m_vc.ok() || _forceClean), m_gp(new TrivialGasPricer), m_stateDB(State::openDB(_dbPath, !m_vc.ok() || _forceClean)), m_preMine(Address(), m_stateDB), m_postMine(Address(), m_stateDB) { m_gp->update(m_bc); m_host = _extNet->registerCapability(new EthereumHost(m_bc, m_tq, m_bq, _networkId)); if (_miners > -1) setMiningThreads(_miners); else setMiningThreads(); if (_dbPath.size()) Defaults::setDBPath(_dbPath); m_vc.setOk(); doWork(); startWorking(); } Client::Client(p2p::Host* _extNet, std::shared_ptr _gp, std::string const& _dbPath, bool _forceClean, u256 _networkId, int _miners): Worker("eth"), m_vc(_dbPath), m_bc(_dbPath, !m_vc.ok() || _forceClean), m_gp(_gp), m_stateDB(State::openDB(_dbPath, !m_vc.ok() || _forceClean)), m_preMine(Address(), m_stateDB), m_postMine(Address(), m_stateDB) { m_gp->update(m_bc); m_host = _extNet->registerCapability(new EthereumHost(m_bc, m_tq, m_bq, _networkId)); if (_miners > -1) setMiningThreads(_miners); else setMiningThreads(); if (_dbPath.size()) Defaults::setDBPath(_dbPath); m_vc.setOk(); doWork(); startWorking(); } Client::~Client() { stopWorking(); } void Client::setNetworkId(u256 _n) { if (auto h = m_host.lock()) h->setNetworkId(_n); } DownloadMan const* Client::downloadMan() const { if (auto h = m_host.lock()) return &(h->downloadMan()); return nullptr; } bool Client::isSyncing() const { if (auto h = m_host.lock()) return h->isSyncing(); return false; } void Client::doneWorking() { // Synchronise the state according to the head of the block chain. // TODO: currently it contains keys for *all* blocks. Make it remove old ones. WriteGuard l(x_stateDB); m_preMine.sync(m_bc); m_postMine = m_preMine; } void Client::flushTransactions() { doWork(); } void Client::killChain() { bool wasMining = isMining(); if (wasMining) stopMining(); stopWorking(); m_tq.clear(); m_bq.clear(); m_localMiners.clear(); m_preMine = State(); m_postMine = State(); { WriteGuard l(x_stateDB); m_stateDB = OverlayDB(); m_stateDB = State::openDB(Defaults::dbPath(), true); } m_bc.reopen(Defaults::dbPath(), true); m_preMine = State(Address(), m_stateDB); m_postMine = State(Address(), m_stateDB); if (auto h = m_host.lock()) h->reset(); doWork(); setMiningThreads(0); startWorking(); if (wasMining) startMining(); } void Client::clearPending() { h256Set changeds; { WriteGuard l(x_stateDB); if (!m_postMine.pending().size()) return; // for (unsigned i = 0; i < m_postMine.pending().size(); ++i) // appendFromNewPending(m_postMine.logBloom(i), changeds); changeds.insert(PendingChangedFilter); m_tq.clear(); m_postMine = m_preMine; } { ReadGuard l(x_localMiners); for (auto& m: m_localMiners) m.noteStateChange(); } noteChanged(changeds); } unsigned Client::installWatch(h256 _h) { unsigned ret; { Guard l(m_filterLock); ret = m_watches.size() ? m_watches.rbegin()->first + 1 : 0; m_watches[ret] = ClientWatch(_h); cwatch << "+++" << ret << _h.abridged(); } auto ch = logs(ret); if (ch.empty()) ch.push_back(InitialChange); { Guard l(m_filterLock); swap(m_watches[ret].changes, ch); } return ret; } unsigned Client::installWatch(LogFilter const& _f) { h256 h = _f.sha3(); { Guard l(m_filterLock); if (!m_filters.count(h)) { cwatch << "FFF" << _f << h.abridged(); m_filters.insert(make_pair(h, _f)); } } return installWatch(h); } void Client::uninstallWatch(unsigned _i) { cwatch << "XXX" << _i; Guard l(m_filterLock); auto it = m_watches.find(_i); if (it == m_watches.end()) return; auto id = it->second.id; m_watches.erase(it); auto fit = m_filters.find(id); if (fit != m_filters.end()) if (!--fit->second.refCount) { cwatch << "*X*" << fit->first << ":" << fit->second.filter; m_filters.erase(fit); } } void Client::noteChanged(h256Set const& _filters) { Guard l(m_filterLock); if (_filters.size()) cnote << "noteChanged(" << _filters << ")"; // accrue all changes left in each filter into the watches. for (auto& i: m_watches) if (_filters.count(i.second.id)) { cwatch << "!!!" << i.first << i.second.id; if (m_filters.count(i.second.id)) i.second.changes += m_filters.at(i.second.id).changes; else i.second.changes.push_back(LocalisedLogEntry(SpecialLogEntry, 0)); } // clear the filters now. for (auto& i: m_filters) i.second.changes.clear(); } LocalisedLogEntries Client::peekWatch(unsigned _watchId) const { Guard l(m_filterLock); try { #if ETH_DEBUG cdebug << "peekWatch" << _watchId; #endif auto& w = m_watches.at(_watchId); #if ETH_DEBUG cdebug << "lastPoll updated to " << chrono::duration_cast(chrono::system_clock::now().time_since_epoch()).count(); #endif w.lastPoll = chrono::system_clock::now(); return w.changes; } catch (...) {} return LocalisedLogEntries(); } LocalisedLogEntries Client::checkWatch(unsigned _watchId) { Guard l(m_filterLock); LocalisedLogEntries ret; try { #if ETH_DEBUG && 0 cdebug << "checkWatch" << _watchId; #endif auto& w = m_watches.at(_watchId); #if ETH_DEBUG && 0 cdebug << "lastPoll updated to " << chrono::duration_cast(chrono::system_clock::now().time_since_epoch()).count(); #endif std::swap(ret, w.changes); w.lastPoll = chrono::system_clock::now(); } catch (...) {} return ret; } void Client::appendFromNewPending(TransactionReceipt const& _receipt, h256Set& io_changed, h256 _sha3) { Guard l(m_filterLock); for (pair& i: m_filters) if ((unsigned)i.second.filter.latest() > m_bc.number()) { // acceptable number. auto m = i.second.filter.matches(_receipt); if (m.size()) { // filter catches them for (LogEntry const& l: m) i.second.changes.push_back(LocalisedLogEntry(l, m_bc.number() + 1, _sha3)); io_changed.insert(i.first); } } } void Client::appendFromNewBlock(h256 const& _block, h256Set& io_changed) { // TODO: more precise check on whether the txs match. auto d = m_bc.info(_block); auto br = m_bc.receipts(_block); Guard l(m_filterLock); for (pair& i: m_filters) if ((unsigned)i.second.filter.latest() >= d.number && (unsigned)i.second.filter.earliest() <= d.number && i.second.filter.matches(d.logBloom)) // acceptable number & looks like block may contain a matching log entry. for (size_t j = 0; j < br.receipts.size(); j++) { auto tr = br.receipts[j]; auto m = i.second.filter.matches(tr); if (m.size()) { auto sha3 = transaction(d.hash, j).sha3(); // filter catches them for (LogEntry const& l: m) i.second.changes.push_back(LocalisedLogEntry(l, (unsigned)d.number, sha3)); io_changed.insert(i.first); } } } void Client::setForceMining(bool _enable) { m_forceMining = _enable; ReadGuard l(x_localMiners); for (auto& m: m_localMiners) m.noteStateChange(); } void Client::setMiningThreads(unsigned _threads) { stopMining(); auto t = _threads ? _threads : thread::hardware_concurrency(); WriteGuard l(x_localMiners); m_localMiners.clear(); m_localMiners.resize(t); unsigned i = 0; for (auto& m: m_localMiners) m.setup(this, i++); } MineProgress Client::miningProgress() const { MineProgress ret; ReadGuard l(x_localMiners); for (auto& m: m_localMiners) ret.combine(m.miningProgress()); return ret; } std::list Client::miningHistory() { std::list ret; ReadGuard l(x_localMiners); if (m_localMiners.empty()) return ret; ret = m_localMiners[0].miningHistory(); for (unsigned i = 1; i < m_localMiners.size(); ++i) { auto l = m_localMiners[i].miningHistory(); auto ri = ret.begin(); auto li = l.begin(); for (; ri != ret.end() && li != l.end(); ++ri, ++li) ri->combine(*li); } return ret; } void Client::setupState(State& _s) { { ReadGuard l(x_stateDB); cwork << "SETUP MINE"; _s = m_postMine; } if (m_paranoia) { if (_s.amIJustParanoid(m_bc)) { cnote << "I'm just paranoid. Block is fine."; _s.commitToMine(m_bc); } else { cwarn << "I'm not just paranoid. Cannot mine. Please file a bug report."; } } else _s.commitToMine(m_bc); } void Client::transact(Secret _secret, u256 _value, Address _dest, bytes const& _data, u256 _gas, u256 _gasPrice) { startWorking(); u256 n; { ReadGuard l(x_stateDB); n = m_postMine.transactionsFrom(toAddress(_secret)); } Transaction t(_value, _gasPrice, _gas, _dest, _data, n, _secret); // cdebug << "Nonce at " << toAddress(_secret) << " pre:" << m_preMine.transactionsFrom(toAddress(_secret)) << " post:" << m_postMine.transactionsFrom(toAddress(_secret)); StructuredLogger::transactionReceived(t.sha3().abridged(), t.sender().abridged()); cnote << "New transaction " << t; m_tq.attemptImport(t.rlp()); } bytes Client::call(Secret _secret, u256 _value, Address _dest, bytes const& _data, u256 _gas, u256 _gasPrice) { bytes out; try { u256 n; State temp; // cdebug << "Nonce at " << toAddress(_secret) << " pre:" << m_preMine.transactionsFrom(toAddress(_secret)) << " post:" << m_postMine.transactionsFrom(toAddress(_secret)); { ReadGuard l(x_stateDB); temp = m_postMine; n = temp.transactionsFrom(toAddress(_secret)); } Transaction t(_value, _gasPrice, _gas, _dest, _data, n, _secret); u256 gasUsed = temp.execute(m_bc, t.rlp(), &out, false); (void)gasUsed; // TODO: do something with gasused which it returns. } catch (...) { // TODO: Some sort of notification of failure. } return out; } bytes Client::call(Address _dest, bytes const& _data, u256 _gas, u256 _value, u256 _gasPrice) { try { State temp; // cdebug << "Nonce at " << toAddress(_secret) << " pre:" << m_preMine.transactionsFrom(toAddress(_secret)) << " post:" << m_postMine.transactionsFrom(toAddress(_secret)); { ReadGuard l(x_stateDB); temp = m_postMine; } Executive e(temp, LastHashes(), 0); if (!e.call(_dest, _dest, Address(), _value, _gasPrice, &_data, _gas, Address())) { e.go(); return e.out().toBytes(); } } catch (...) { // TODO: Some sort of notification of failure. } return bytes(); } Address Client::transact(Secret _secret, u256 _endowment, bytes const& _init, u256 _gas, u256 _gasPrice) { startWorking(); u256 n; { ReadGuard l(x_stateDB); n = m_postMine.transactionsFrom(toAddress(_secret)); } Transaction t(_endowment, _gasPrice, _gas, _init, n, _secret); cnote << "New transaction " << t; m_tq.attemptImport(t.rlp()); return right160(sha3(rlpList(t.sender(), t.nonce()))); } void Client::inject(bytesConstRef _rlp) { startWorking(); m_tq.attemptImport(_rlp); } pair Client::getWork() { Guard l(x_remoteMiner); { ReadGuard l(x_stateDB); m_remoteMiner.update(m_postMine, m_bc); } return make_pair(m_remoteMiner.workHash(), m_remoteMiner.difficulty()); } bool Client::submitWork(ProofOfWork::Proof const& _proof) { Guard l(x_remoteMiner); return m_remoteMiner.submitWork(_proof); } void Client::doWork() { // TODO: Use condition variable rather than polling. cworkin << "WORK"; h256Set changeds; auto maintainMiner = [&](Miner& m) { if (m.isComplete()) { // TODO: enable a short-circuit option since we mined it. will need to get the end state from the miner. auto lm = dynamic_cast(&m); h256s hs; if (false && lm && !m_verifyOwnBlocks) { // TODO: implement //m_bc.attemptImport(m_blockData(), m_stateDB, lm->state()); // TODO: derive hs from lm->state() } else { cwork << "CHAIN <== postSTATE"; WriteGuard l(x_stateDB); hs = m_bc.attemptImport(m.blockData(), m_stateDB); } if (hs.size()) { for (auto const& h: hs) appendFromNewBlock(h, changeds); changeds.insert(ChainChangedFilter); } for (auto& m: m_localMiners) m.noteStateChange(); } }; { ReadGuard l(x_localMiners); for (auto& m: m_localMiners) maintainMiner(m); } { Guard l(x_remoteMiner); maintainMiner(m_remoteMiner); } // Synchronise state to block chain. // This should remove any transactions on our queue that are included within our state. // It also guarantees that the state reflects the longest (valid!) chain on the block chain. // This might mean reverting to an earlier state and replaying some blocks, or, (worst-case: // if there are no checkpoints before our fork) reverting to the genesis block and replaying // all blocks. // Resynchronise state with block chain & trans bool resyncStateNeeded = false; { WriteGuard l(x_stateDB); cwork << "BQ ==> CHAIN ==> STATE"; OverlayDB db = m_stateDB; x_stateDB.unlock(); h256s newBlocks = m_bc.sync(m_bq, db, 100); // TODO: remove transactions from m_tq nicely rather than relying on out of date nonce later on. if (newBlocks.size()) { for (auto i: newBlocks) appendFromNewBlock(i, changeds); changeds.insert(ChainChangedFilter); } x_stateDB.lock(); if (newBlocks.size()) m_stateDB = db; cwork << "preSTATE <== CHAIN"; if (m_preMine.sync(m_bc) || m_postMine.address() != m_preMine.address()) { if (isMining()) cnote << "New block on chain: Restarting mining operation."; m_postMine = m_preMine; resyncStateNeeded = true; changeds.insert(PendingChangedFilter); // TODO: Move transactions pending from m_postMine back to transaction queue. } // returns h256s as blooms, once for each transaction. cwork << "postSTATE <== TQ"; TransactionReceipts newPendingReceipts = m_postMine.sync(m_bc, m_tq, *m_gp); if (newPendingReceipts.size()) { for (size_t i = 0; i < newPendingReceipts.size(); i++) appendFromNewPending(newPendingReceipts[i], changeds, m_postMine.pending()[i].sha3()); changeds.insert(PendingChangedFilter); if (isMining()) cnote << "Additional transaction ready: Restarting mining operation."; resyncStateNeeded = true; } } if (resyncStateNeeded) { ReadGuard l(x_localMiners); for (auto& m: m_localMiners) m.noteStateChange(); } cwork << "noteChanged" << changeds.size() << "items"; noteChanged(changeds); cworkout << "WORK"; this_thread::sleep_for(chrono::milliseconds(100)); if (chrono::system_clock::now() - m_lastGarbageCollection > chrono::seconds(5)) { // watches garbage collection vector toUninstall; { Guard l(m_filterLock); for (auto key: keysOf(m_watches)) if (chrono::system_clock::now() - m_watches[key].lastPoll > chrono::seconds(20)) { toUninstall.push_back(key); cnote << "GC: Uninstall" << key << "(" << chrono::duration_cast(chrono::system_clock::now() - m_watches[key].lastPoll).count() << "s old)"; } } for (auto i: toUninstall) uninstallWatch(i); // blockchain GC m_bc.garbageCollect(); m_lastGarbageCollection = chrono::system_clock::now(); } } unsigned Client::numberOf(int _n) const { if (_n > 0) return _n; else if (_n == GenesisBlock) return 0; else return m_bc.details().number + max(-(int)m_bc.details().number, 1 + _n); } State Client::asOf(int _h) const { ReadGuard l(x_stateDB); if (_h == 0) return m_postMine; else if (_h == -1) return m_preMine; else return State(m_stateDB, m_bc, m_bc.numberHash(numberOf(_h))); } State Client::state(unsigned _txi, h256 _block) const { ReadGuard l(x_stateDB); return State(m_stateDB, m_bc, _block).fromPending(_txi); } eth::State Client::state(h256 _block) const { ReadGuard l(x_stateDB); return State(m_stateDB, m_bc, _block); } eth::State Client::state(unsigned _txi) const { ReadGuard l(x_stateDB); return m_postMine.fromPending(_txi); } StateDiff Client::diff(unsigned _txi, int _block) const { State st = asOf(_block); return st.fromPending(_txi).diff(st.fromPending(_txi + 1)); } StateDiff Client::diff(unsigned _txi, h256 _block) const { State st = state(_block); return st.fromPending(_txi).diff(st.fromPending(_txi + 1)); } std::vector
Client::addresses(int _block) const { vector
ret; for (auto const& i: asOf(_block).addresses()) ret.push_back(i.first); return ret; } u256 Client::balanceAt(Address _a, int _block) const { return asOf(_block).balance(_a); } std::map Client::storageAt(Address _a, int _block) const { return asOf(_block).storage(_a); } u256 Client::countAt(Address _a, int _block) const { return asOf(_block).transactionsFrom(_a); } u256 Client::stateAt(Address _a, u256 _l, int _block) const { return asOf(_block).storage(_a, _l); } bytes Client::codeAt(Address _a, int _block) const { return asOf(_block).code(_a); } Transaction Client::transaction(h256 _blockHash, unsigned _i) const { auto bl = m_bc.block(_blockHash); RLP b(bl); if (_i < b[1].itemCount()) return Transaction(b[1][_i].data(), CheckSignature::Range); else return Transaction(); } BlockInfo Client::uncle(h256 _blockHash, unsigned _i) const { auto bl = m_bc.block(_blockHash); RLP b(bl); if (_i < b[2].itemCount()) return BlockInfo::fromHeader(b[2][_i].data()); else return BlockInfo(); } unsigned Client::transactionCount(h256 _blockHash) const { auto bl = m_bc.block(_blockHash); RLP b(bl); return b[1].itemCount(); } unsigned Client::uncleCount(h256 _blockHash) const { auto bl = m_bc.block(_blockHash); RLP b(bl); return b[2].itemCount(); } LocalisedLogEntries Client::logs(LogFilter const& _f) const { LocalisedLogEntries ret; unsigned begin = min(m_bc.number() + 1, (unsigned)_f.latest()); unsigned end = min(m_bc.number(), min(begin, (unsigned)_f.earliest())); // Handle pending transactions differently as they're not on the block chain. if (begin > m_bc.number()) { ReadGuard l(x_stateDB); for (unsigned i = 0; i < m_postMine.pending().size(); ++i) { // Might have a transaction that contains a matching log. TransactionReceipt const& tr = m_postMine.receipt(i); auto sha3 = m_postMine.pending()[i].sha3(); LogEntries le = _f.matches(tr); if (le.size()) for (unsigned j = 0; j < le.size(); ++j) ret.insert(ret.begin(), LocalisedLogEntry(le[j], begin, sha3)); } begin = m_bc.number(); } set matchingBlocks; for (auto const& i: _f.bloomPossibilities()) for (auto u: m_bc.withBlockBloom(i, end, begin)) matchingBlocks.insert(u); #if ETH_DEBUG unsigned falsePos = 0; #endif for (auto n: matchingBlocks) { #if ETH_DEBUG int total = 0; #endif auto h = m_bc.numberHash(n); auto receipts = m_bc.receipts(h).receipts; for (size_t i = 0; i < receipts.size(); i++) { TransactionReceipt receipt = receipts[i]; if (_f.matches(receipt.bloom())) { auto info = m_bc.info(h); auto h = transaction(info.hash, i).sha3(); LogEntries le = _f.matches(receipt); if (le.size()) { #if ETH_DEBUG total += le.size(); #endif for (unsigned j = 0; j < le.size(); ++j) ret.insert(ret.begin(), LocalisedLogEntry(le[j], n, h)); } } #if ETH_DEBUG if (!total) falsePos++; #endif } } #if ETH_DEBUG cdebug << matchingBlocks.size() << "searched from" << (end - begin) << "skipped; " << falsePos << "false +ves"; #endif return ret; }