/* This file is part of cpp-ethereum. cpp-ethereum is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. cpp-ethereum is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with cpp-ethereum. If not, see . */ /** @file BlockInfo.cpp * @author Gav Wood * @date 2014 */ #include #include #include #include #include #include #include "EthashAux.h" #include "Exceptions.h" #include "BlockInfo.h" using namespace std; using namespace dev; using namespace dev::eth; BlockInfo::BlockInfo(): m_timestamp(Invalid256) { } BlockInfo::BlockInfo(bytesConstRef _block, Strictness _s, h256 const& _hashWith, BlockDataType _bdt) { RLP header = _bdt == BlockData ? extractHeader(_block) : RLP(_block); m_hash = _hashWith ? _hashWith : sha3(header.data()); populateFromHeader(header, _s); } void BlockInfo::clear() { m_parentHash = h256(); m_sha3Uncles = EmptyListSHA3; m_coinbaseAddress = Address(); m_stateRoot = EmptyTrie; m_transactionsRoot = EmptyTrie; m_receiptsRoot = EmptyTrie; m_logBloom = LogBloom(); m_difficulty = 0; m_number = 0; m_gasLimit = 0; m_gasUsed = 0; m_timestamp = 0; m_extraData.clear(); noteDirty(); } h256 const& BlockInfo::boundary() const { if (!m_boundary && m_difficulty) m_boundary = (h256)(u256)((bigint(1) << 256) / m_difficulty); return m_boundary; } h256 const& BlockInfo::hashWithout() const { if (!m_hashWithout) { RLPStream s(BasicFields); streamRLPFields(s); m_hashWithout = sha3(s.out()); } return m_hashWithout; } void BlockInfo::streamRLPFields(RLPStream& _s) const { _s << m_parentHash << m_sha3Uncles << m_coinbaseAddress << m_stateRoot << m_transactionsRoot << m_receiptsRoot << m_logBloom << m_difficulty << m_number << m_gasLimit << m_gasUsed << m_timestamp << m_extraData; } h256 BlockInfo::headerHashFromBlock(bytesConstRef _block) { return sha3(RLP(_block)[0].data()); } RLP BlockInfo::extractHeader(bytesConstRef _block) { RLP root(_block); if (!root.isList()) BOOST_THROW_EXCEPTION(InvalidBlockFormat() << errinfo_comment("block needs to be a list") << BadFieldError(0, _block.toString())); RLP header = root[0]; if (!header.isList()) BOOST_THROW_EXCEPTION(InvalidBlockFormat() << errinfo_comment("block header needs to be a list") << BadFieldError(0, header.data().toString())); if (!root[1].isList()) BOOST_THROW_EXCEPTION(InvalidBlockFormat() << errinfo_comment("block transactions need to be a list") << BadFieldError(1, root[1].data().toString())); if (!root[2].isList()) BOOST_THROW_EXCEPTION(InvalidBlockFormat() << errinfo_comment("block uncles need to be a list") << BadFieldError(2, root[2].data().toString())); return header; } void BlockInfo::populateFromHeader(RLP const& _header, Strictness _s) { int field = 0; try { m_parentHash = _header[field = 0].toHash(RLP::VeryStrict); m_sha3Uncles = _header[field = 1].toHash(RLP::VeryStrict); m_coinbaseAddress = _header[field = 2].toHash
(RLP::VeryStrict); m_stateRoot = _header[field = 3].toHash(RLP::VeryStrict); m_transactionsRoot = _header[field = 4].toHash(RLP::VeryStrict); m_receiptsRoot = _header[field = 5].toHash(RLP::VeryStrict); m_logBloom = _header[field = 6].toHash(RLP::VeryStrict); m_difficulty = _header[field = 7].toInt(); m_number = _header[field = 8].toInt(); m_gasLimit = _header[field = 9].toInt(); m_gasUsed = _header[field = 10].toInt(); m_timestamp = _header[field = 11].toInt(); m_extraData = _header[field = 12].toBytes(); } catch (Exception const& _e) { _e << errinfo_name("invalid block header format") << BadFieldError(field, toHex(_header[field].data().toBytes())); throw; } if (m_number > ~(unsigned)0) BOOST_THROW_EXCEPTION(InvalidNumber()); if (_s != CheckNothing && m_gasUsed > m_gasLimit) BOOST_THROW_EXCEPTION(TooMuchGasUsed() << RequirementError(bigint(m_gasLimit), bigint(m_gasUsed))); } struct BlockInfoDiagnosticsChannel: public LogChannel { static const char* name() { return EthBlue "▧" EthWhite " ◌"; } static const int verbosity = 9; }; void BlockInfo::verifyInternals(bytesConstRef _block) const { RLP root(_block); auto txList = root[1]; auto expectedRoot = trieRootOver(txList.itemCount(), [&](unsigned i){ return rlp(i); }, [&](unsigned i){ return txList[i].data().toBytes(); }); clog(BlockInfoDiagnosticsChannel) << "Expected trie root:" << toString(expectedRoot); if (m_transactionsRoot != expectedRoot) { MemoryDB tm; GenericTrieDB transactionsTrie(&tm); transactionsTrie.init(); vector txs; for (unsigned i = 0; i < txList.itemCount(); ++i) { RLPStream k; k << i; transactionsTrie.insert(&k.out(), txList[i].data()); txs.push_back(txList[i].data()); cdebug << toHex(k.out()) << toHex(txList[i].data()); } cdebug << "trieRootOver" << expectedRoot; cdebug << "orderedTrieRoot" << orderedTrieRoot(txs); cdebug << "TrieDB" << transactionsTrie.root(); cdebug << "Contents:"; for (auto const& t: txs) cdebug << toHex(t); BOOST_THROW_EXCEPTION(InvalidTransactionsRoot() << Hash256RequirementError(expectedRoot, m_transactionsRoot)); } clog(BlockInfoDiagnosticsChannel) << "Expected uncle hash:" << toString(sha3(root[2].data())); if (m_sha3Uncles != sha3(root[2].data())) BOOST_THROW_EXCEPTION(InvalidUnclesHash() << Hash256RequirementError(sha3(root[2].data()), m_sha3Uncles)); } void BlockInfo::populateFromParent(BlockInfo const& _parent) { m_stateRoot = _parent.stateRoot(); m_number = _parent.m_number + 1; m_parentHash = _parent.m_hash; m_gasLimit = _parent.childGasLimit(); m_gasUsed = 0; m_difficulty = calculateDifficulty(_parent); } u256 BlockInfo::childGasLimit(u256 const& _gasFloorTarget) const { u256 gasFloorTarget = _gasFloorTarget == UndefinedU256 ? c_gasFloorTarget : _gasFloorTarget; if (m_gasLimit < gasFloorTarget) return min(gasFloorTarget, m_gasLimit + m_gasLimit / c_gasLimitBoundDivisor - 1); else return max(gasFloorTarget, m_gasLimit - m_gasLimit / c_gasLimitBoundDivisor + 1 + (m_gasUsed * 6 / 5) / c_gasLimitBoundDivisor); } u256 BlockInfo::calculateDifficulty(BlockInfo const& _parent) const { const unsigned c_expDiffPeriod = 100000; if (!m_number) throw GenesisBlockCannotBeCalculated(); u256 o = max(c_minimumDifficulty, m_timestamp >= _parent.m_timestamp + c_durationLimit ? _parent.m_difficulty - (_parent.m_difficulty / c_difficultyBoundDivisor) : (_parent.m_difficulty + (_parent.m_difficulty / c_difficultyBoundDivisor))); unsigned periodCount = unsigned(_parent.number() + 1) / c_expDiffPeriod; if (periodCount > 2) o = (u256)max(c_minimumDifficulty, bigint(o) - (bigint(1) << (periodCount - 2))); // latter will eventually become negative, so ensure it's a bigint. return o; } void BlockInfo::verifyParent(BlockInfo const& _parent) const { // Check timestamp is after previous timestamp. if (m_parentHash) { if (m_timestamp <= _parent.m_timestamp) BOOST_THROW_EXCEPTION(InvalidTimestamp()); if (m_number != _parent.m_number + 1) BOOST_THROW_EXCEPTION(InvalidNumber()); } }