/* This file is part of cpp-ethereum. cpp-ethereum is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. cpp-ethereum is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with cpp-ethereum. If not, see . */ /** @file Host.cpp * @author Alex Leverington * @author Gav Wood * @date 2014 */ #include #include #include #include #include #include #include #include #include #include #include "Session.h" #include "Common.h" #include "Capability.h" #include "UPnP.h" #include "Host.h" using namespace std; using namespace dev; using namespace dev::p2p; HostNodeTableHandler::HostNodeTableHandler(Host& _host): m_host(_host) {} void HostNodeTableHandler::processEvent(NodeId const& _n, NodeTableEventType const& _e) { m_host.onNodeTableEvent(_n, _e); } Host::Host(std::string const& _clientVersion, NetworkPreferences const& _n, bytesConstRef _restoreNetwork): Worker("p2p", 0), m_restoreNetwork(_restoreNetwork.toBytes()), m_clientVersion(_clientVersion), m_netPrefs(_n), m_ifAddresses(Network::getInterfaceAddresses()), m_ioService(2), m_tcp4Acceptor(m_ioService), m_alias(networkAlias(_restoreNetwork)), m_lastPing(chrono::steady_clock::time_point::min()) { for (auto address: m_ifAddresses) if (address.is_v4()) clog(NetNote) << "IP Address: " << address << " = " << (isPrivateAddress(address) ? "[LOCAL]" : "[PEER]"); clog(NetNote) << "Id:" << id(); } Host::~Host() { stop(); } void Host::start() { startWorking(); } void Host::stop() { // called to force io_service to kill any remaining tasks it might have - // such tasks may involve socket reads from Capabilities that maintain references // to resources we're about to free. { // Although m_run is set by stop() or start(), it effects m_runTimer so x_runTimer is used instead of a mutex for m_run. // when m_run == false, run() will cause this::run() to stop() ioservice Guard l(x_runTimer); // ignore if already stopped/stopping if (!m_run) return; m_run = false; } // wait for m_timer to reset (indicating network scheduler has stopped) while (!!m_timer) this_thread::sleep_for(chrono::milliseconds(50)); // stop worker thread stopWorking(); } void Host::doneWorking() { // reset ioservice (allows manually polling network, below) m_ioService.reset(); // shutdown acceptor m_tcp4Acceptor.cancel(); if (m_tcp4Acceptor.is_open()) m_tcp4Acceptor.close(); // There maybe an incoming connection which started but hasn't finished. // Wait for acceptor to end itself instead of assuming it's complete. // This helps ensure a peer isn't stopped at the same time it's starting // and that socket for pending connection is closed. while (m_accepting) m_ioService.poll(); // stop capabilities (eth: stops syncing or block/tx broadcast) for (auto const& h: m_capabilities) h.second->onStopping(); // disconnect peers for (unsigned n = 0;; n = 0) { { RecursiveGuard l(x_sessions); for (auto i: m_sessions) if (auto p = i.second.lock()) if (p->isConnected()) { p->disconnect(ClientQuit); n++; } } if (!n) break; // poll so that peers send out disconnect packets m_ioService.poll(); } // stop network (again; helpful to call before subsequent reset()) m_ioService.stop(); // reset network (allows reusing ioservice in future) m_ioService.reset(); // finally, clear out peers (in case they're lingering) RecursiveGuard l(x_sessions); m_sessions.clear(); } unsigned Host::protocolVersion() const { return 3; } void Host::registerPeer(std::shared_ptr _s, CapDescs const& _caps) { { clog(NetNote) << "p2p.host.peer.register" << _s->m_peer->id.abridged(); StructuredLogger::p2pConnected( _s->m_peer->id.abridged(), _s->m_peer->peerEndpoint(), _s->m_peer->m_lastConnected, _s->m_info.clientVersion, peerCount() ); RecursiveGuard l(x_sessions); // TODO: temporary loose-coupling; if m_peers already has peer, // it is same as _s->m_peer. (fixing next PR) if (!m_peers.count(_s->m_peer->id)) m_peers[_s->m_peer->id] = _s->m_peer; m_sessions[_s->m_peer->id] = _s; } unsigned o = (unsigned)UserPacket; for (auto const& i: _caps) if (haveCapability(i)) { _s->m_capabilities[i] = shared_ptr(m_capabilities[i]->newPeerCapability(_s.get(), o)); o += m_capabilities[i]->messageCount(); } } void Host::onNodeTableEvent(NodeId const& _n, NodeTableEventType const& _e) { if (_e == NodeEntryAdded) { clog(NetNote) << "p2p.host.nodeTable.events.nodeEntryAdded " << _n; auto n = m_nodeTable->node(_n); if (n) { shared_ptr p; { RecursiveGuard l(x_sessions); if (m_peers.count(_n)) p = m_peers[_n]; else { // TODO p2p: construct peer from node p.reset(new Peer()); p->id = _n; p->endpoint = NodeIPEndpoint(n.endpoint.udp, n.endpoint.tcp); p->required = n.required; m_peers[_n] = p; clog(NetNote) << "p2p.host.peers.events.peersAdded " << _n << p->endpoint.tcp.address() << p->endpoint.udp.address(); } p->endpoint.tcp = n.endpoint.tcp; } // TODO: Implement similar to discover. Attempt connecting to nodes // until ideal peer count is reached; if all nodes are tried, // repeat. Notably, this is an integrated process such that // when onNodeTableEvent occurs we should also update +/- // the list of nodes to be tried. Thus: // 1) externalize connection attempts // 2) attempt copies potentialPeer list // 3) replace this logic w/maintenance of potentialPeers if (peerCount() < m_idealPeerCount) connect(p); } } else if (_e == NodeEntryRemoved) { clog(NetNote) << "p2p.host.nodeTable.events.nodeEntryRemoved " << _n; RecursiveGuard l(x_sessions); m_peers.erase(_n); } } void Host::seal(bytes& _b) { _b[0] = 0x22; _b[1] = 0x40; _b[2] = 0x08; _b[3] = 0x91; uint32_t len = (uint32_t)_b.size() - 8; _b[4] = (len >> 24) & 0xff; _b[5] = (len >> 16) & 0xff; _b[6] = (len >> 8) & 0xff; _b[7] = len & 0xff; } void Host::determinePublic(string const& _publicAddress, bool _upnp) { m_peerAddresses.clear(); // no point continuing if there are no interface addresses or valid listen port if (!m_ifAddresses.size() || m_listenPort < 1) return; // populate interfaces we'll listen on (eth listens on all interfaces); ignores local for (auto addr: m_ifAddresses) if ((m_netPrefs.localNetworking || !isPrivateAddress(addr)) && !isLocalHostAddress(addr)) m_peerAddresses.insert(addr); // if user supplied address is a public address then we use it // if user supplied address is private, and localnetworking is enabled, we use it bi::address reqPublicAddr(bi::address(_publicAddress.empty() ? bi::address() : bi::address::from_string(_publicAddress))); bi::tcp::endpoint reqPublic(reqPublicAddr, m_listenPort); bool isprivate = isPrivateAddress(reqPublicAddr); bool ispublic = !isprivate && !isLocalHostAddress(reqPublicAddr); if (!reqPublicAddr.is_unspecified() && (ispublic || (isprivate && m_netPrefs.localNetworking))) { if (!m_peerAddresses.count(reqPublicAddr)) m_peerAddresses.insert(reqPublicAddr); m_tcpPublic = reqPublic; return; } // if address wasn't provided, then use first public ipv4 address found for (auto addr: m_peerAddresses) if (addr.is_v4() && !isPrivateAddress(addr)) { m_tcpPublic = bi::tcp::endpoint(*m_peerAddresses.begin(), m_listenPort); return; } // or find address via upnp if (_upnp) { bi::address upnpifaddr; bi::tcp::endpoint upnpep = Network::traverseNAT(m_ifAddresses, m_listenPort, upnpifaddr); if (!upnpep.address().is_unspecified() && !upnpifaddr.is_unspecified()) { if (!m_peerAddresses.count(upnpep.address())) m_peerAddresses.insert(upnpep.address()); m_tcpPublic = upnpep; return; } } // or if no address provided, use private ipv4 address if local networking is enabled if (reqPublicAddr.is_unspecified()) if (m_netPrefs.localNetworking) for (auto addr: m_peerAddresses) if (addr.is_v4() && isPrivateAddress(addr)) { m_tcpPublic = bi::tcp::endpoint(addr, m_listenPort); return; } // otherwise address is unspecified m_tcpPublic = bi::tcp::endpoint(bi::address(), m_listenPort); } void Host::runAcceptor() { assert(m_listenPort > 0); if (m_run && !m_accepting) { clog(NetConnect) << "Listening on local port " << m_listenPort << " (public: " << m_tcpPublic << ")"; m_accepting = true; // socket is created outside of acceptor-callback // An allocated socket is necessary as asio can use the socket // until the callback succeeds or fails. // // Until callback succeeds or fails, we can't dealloc it. // // Callback is guaranteed to be called via asio or when // m_tcp4Acceptor->stop() is called by Host. // // All exceptions are caught so they don't halt asio and so the // socket is deleted. // // It's possible for an accepted connection to return an error in which // case the socket may be open and must be closed to prevent asio from // processing socket events after socket is deallocated. bi::tcp::socket *s = new bi::tcp::socket(m_ioService); m_tcp4Acceptor.async_accept(*s, [=](boost::system::error_code ec) { // if no error code, doHandshake takes ownership bool success = false; if (!ec) { try { // doHandshake takes ownersihp of *s via std::move // incoming connection; we don't yet know nodeid doHandshake(s, NodeId()); success = true; } catch (Exception const& _e) { clog(NetWarn) << "ERROR: " << diagnostic_information(_e); } catch (std::exception const& _e) { clog(NetWarn) << "ERROR: " << _e.what(); } } // asio doesn't close socket on error if (!success && s->is_open()) { boost::system::error_code ec; s->shutdown(boost::asio::ip::tcp::socket::shutdown_both, ec); s->close(); } m_accepting = false; delete s; if (ec.value() < 1) runAcceptor(); }); } } void Host::doHandshake(bi::tcp::socket* _socket, NodeId _nodeId) { try { clog(NetConnect) << "Accepting connection for " << _socket->remote_endpoint(); } catch (...){} shared_ptr p; if (_nodeId) p = m_peers[_nodeId]; if (!p) p.reset(new Peer()); p->endpoint.tcp.address(_socket->remote_endpoint().address()); auto ps = std::make_shared(this, std::move(*_socket), p); ps->start(); } string Host::pocHost() { vector strs; boost::split(strs, dev::Version, boost::is_any_of(".")); return "poc-" + strs[1] + ".ethdev.com"; } void Host::addNode(NodeId const& _node, std::string const& _addr, unsigned short _tcpPeerPort, unsigned short _udpNodePort) { // TODO: p2p clean this up (bring tested acceptor code over from network branch) while (isWorking() && !m_run) this_thread::sleep_for(chrono::milliseconds(50)); if (!m_run) return; if (_tcpPeerPort < 30300 || _tcpPeerPort > 30305) cwarn << "Non-standard port being recorded: " << _tcpPeerPort; if (_tcpPeerPort >= /*49152*/32768) { cwarn << "Private port being recorded - setting to 0"; _tcpPeerPort = 0; } boost::system::error_code ec; bi::address addr = bi::address::from_string(_addr, ec); if (ec) { bi::tcp::resolver *r = new bi::tcp::resolver(m_ioService); r->async_resolve({_addr, toString(_tcpPeerPort)}, [=](boost::system::error_code const& _ec, bi::tcp::resolver::iterator _epIt) { if (!_ec) { bi::tcp::endpoint tcp = *_epIt; if (m_nodeTable) m_nodeTable->addNode(Node(_node, NodeIPEndpoint(bi::udp::endpoint(tcp.address(), _udpNodePort), tcp))); } delete r; }); } else if (m_nodeTable) m_nodeTable->addNode(Node(_node, NodeIPEndpoint(bi::udp::endpoint(addr, _udpNodePort), bi::tcp::endpoint(addr, _tcpPeerPort)))); } void Host::connect(std::shared_ptr const& _p) { for (unsigned i = 0; i < 200; i++) if (isWorking() && !m_run) this_thread::sleep_for(chrono::milliseconds(50)); if (!m_run) return; if (havePeerSession(_p->id)) { clog(NetWarn) << "Aborted connect. Node already connected."; return; } if (!m_nodeTable->haveNode(_p->id)) { clog(NetWarn) << "Aborted connect. Node not in node table."; m_nodeTable->addNode(*_p.get()); return; } // prevent concurrently connecting to a node Peer *nptr = _p.get(); { Guard l(x_pendingNodeConns); if (m_pendingPeerConns.count(nptr)) return; m_pendingPeerConns.insert(nptr); } clog(NetConnect) << "Attempting connection to node" << _p->id.abridged() << "@" << _p->peerEndpoint() << "from" << id().abridged(); bi::tcp::socket* s = new bi::tcp::socket(m_ioService); s->async_connect(_p->peerEndpoint(), [=](boost::system::error_code const& ec) { if (ec) { clog(NetConnect) << "Connection refused to node" << _p->id.abridged() << "@" << _p->peerEndpoint() << "(" << ec.message() << ")"; _p->m_lastDisconnect = TCPError; _p->m_lastAttempted = std::chrono::system_clock::now(); } else { clog(NetConnect) << "Connected to" << _p->id.abridged() << "@" << _p->peerEndpoint(); _p->m_lastDisconnect = NoDisconnect; _p->m_lastConnected = std::chrono::system_clock::now(); _p->m_failedAttempts = 0; auto ps = make_shared(this, std::move(*s), _p); ps->start(); } delete s; Guard l(x_pendingNodeConns); m_pendingPeerConns.erase(nptr); }); } PeerSessionInfos Host::peerSessionInfo() const { if (!m_run) return PeerSessionInfos(); std::vector ret; RecursiveGuard l(x_sessions); for (auto& i: m_sessions) if (auto j = i.second.lock()) if (j->isConnected()) ret.push_back(j->m_info); return ret; } size_t Host::peerCount() const { unsigned retCount = 0; RecursiveGuard l(x_sessions); for (auto& i: m_sessions) if (std::shared_ptr j = i.second.lock()) if (j->isConnected()) retCount++; return retCount; } void Host::run(boost::system::error_code const&) { if (!m_run) { // reset NodeTable m_nodeTable.reset(); // stopping io service allows running manual network operations for shutdown // and also stops blocking worker thread, allowing worker thread to exit m_ioService.stop(); // resetting timer signals network that nothing else can be scheduled to run m_timer.reset(); return; } m_nodeTable->processEvents(); for (auto p: m_sessions) if (auto pp = p.second.lock()) pp->serviceNodesRequest(); keepAlivePeers(); disconnectLatePeers(); auto c = peerCount(); if (m_idealPeerCount && !c) for (auto p: m_peers) if (p.second->shouldReconnect()) { // TODO p2p: fixme p.second->m_lastAttempted = std::chrono::system_clock::now(); connect(p.second); break; } if (c < m_idealPeerCount) m_nodeTable->discover(); auto runcb = [this](boost::system::error_code const& error) { run(error); }; m_timer->expires_from_now(boost::posix_time::milliseconds(c_timerInterval)); m_timer->async_wait(runcb); } void Host::startedWorking() { asserts(!m_timer); { // prevent m_run from being set to true at same time as set to false by stop() // don't release mutex until m_timer is set so in case stop() is called at same // time, stop will wait on m_timer and graceful network shutdown. Guard l(x_runTimer); // create deadline timer m_timer.reset(new boost::asio::deadline_timer(m_ioService)); m_run = true; } // try to open acceptor (todo: ipv6) m_listenPort = Network::tcp4Listen(m_tcp4Acceptor, m_netPrefs.listenPort); // start capability threads for (auto const& h: m_capabilities) h.second->onStarting(); // determine public IP, but only if we're able to listen for connections // todo: GUI when listen is unavailable in UI if (m_listenPort) { determinePublic(m_netPrefs.publicIP, m_netPrefs.upnp); if (m_listenPort > 0) runAcceptor(); } else clog(NetNote) << "p2p.start.notice id:" << id().abridged() << "Listen port is invalid or unavailable. Node Table using default port (30303)."; // TODO: add m_tcpPublic endpoint; sort out endpoint stuff for nodetable m_nodeTable.reset(new NodeTable(m_ioService, m_alias, m_listenPort > 0 ? m_listenPort : 30303)); m_nodeTable->setEventHandler(new HostNodeTableHandler(*this)); restoreNetwork(&m_restoreNetwork); clog(NetNote) << "p2p.started id:" << id().abridged(); run(boost::system::error_code()); } void Host::doWork() { if (m_run) m_ioService.run(); } void Host::keepAlivePeers() { if (chrono::steady_clock::now() - c_keepAliveInterval < m_lastPing) return; RecursiveGuard l(x_sessions); for (auto p: m_sessions) if (auto pp = p.second.lock()) pp->ping(); m_lastPing = chrono::steady_clock::now(); } void Host::disconnectLatePeers() { auto now = chrono::steady_clock::now(); if (now - c_keepAliveTimeOut < m_lastPing) return; RecursiveGuard l(x_sessions); for (auto p: m_sessions) if (auto pp = p.second.lock()) if (now - c_keepAliveTimeOut > m_lastPing && pp->m_lastReceived < m_lastPing) pp->disconnect(PingTimeout); } bytes Host::saveNetwork() const { if (!m_nodeTable) return bytes(); std::list peers; { RecursiveGuard l(x_sessions); for (auto p: m_peers) if (p.second) peers.push_back(*p.second); } peers.sort(); RLPStream network; int count = 0; { RecursiveGuard l(x_sessions); for (auto const& p: peers) { // TODO: alpha: Figure out why it ever shares these ports.//p.address.port() >= 30300 && p.address.port() <= 30305 && // TODO: alpha: if/how to save private addresses // Only save peers which have connected within 2 days, with properly-advertised port and public IP address if (chrono::system_clock::now() - p.m_lastConnected < chrono::seconds(3600 * 48) && p.peerEndpoint().port() > 0 && p.peerEndpoint().port() < /*49152*/32768 && p.id != id() && !isPrivateAddress(p.peerEndpoint().address())) { network.appendList(10); if (p.peerEndpoint().address().is_v4()) network << p.peerEndpoint().address().to_v4().to_bytes(); else network << p.peerEndpoint().address().to_v6().to_bytes(); // TODO: alpha: replace 0 with trust-state of node network << p.peerEndpoint().port() << p.id << 0 << chrono::duration_cast(p.m_lastConnected.time_since_epoch()).count() << chrono::duration_cast(p.m_lastAttempted.time_since_epoch()).count() << p.m_failedAttempts << (unsigned)p.m_lastDisconnect << p.m_score << p.m_rating; count++; } } } if (!!m_nodeTable) { auto state = m_nodeTable->snapshot(); state.sort(); for (auto const& s: state) { network.appendList(3); if (s.endpoint.tcp.address().is_v4()) network << s.endpoint.tcp.address().to_v4().to_bytes(); else network << s.endpoint.tcp.address().to_v6().to_bytes(); network << s.endpoint.tcp.port() << s.id; count++; } } RLPStream ret(3); ret << 1 << m_alias.secret(); ret.appendList(count).appendRaw(network.out(), count); return ret.out(); } void Host::restoreNetwork(bytesConstRef _b) { // nodes can only be added if network is added if (!isStarted()) BOOST_THROW_EXCEPTION(NetworkStartRequired()); RecursiveGuard l(x_sessions); RLP r(_b); if (r.itemCount() > 0 && r[0].isInt() && r[0].toInt() == 1) { // r[0] = version // r[1] = key // r[2] = nodes for (auto i: r[2]) { bi::tcp::endpoint tcp; bi::udp::endpoint udp; if (i[0].itemCount() == 4) { tcp = bi::tcp::endpoint(bi::address_v4(i[0].toArray()), i[1].toInt()); udp = bi::udp::endpoint(bi::address_v4(i[0].toArray()), i[1].toInt()); } else { tcp = bi::tcp::endpoint(bi::address_v6(i[0].toArray()), i[1].toInt()); udp = bi::udp::endpoint(bi::address_v6(i[0].toArray()), i[1].toInt()); } auto id = (NodeId)i[2]; if (i.itemCount() == 3) m_nodeTable->addNode(id, udp, tcp); else if (i.itemCount() == 10) { shared_ptr p = make_shared(); p->id = id; p->m_lastConnected = chrono::system_clock::time_point(chrono::seconds(i[4].toInt())); p->m_lastAttempted = chrono::system_clock::time_point(chrono::seconds(i[5].toInt())); p->m_failedAttempts = i[6].toInt(); p->m_lastDisconnect = (DisconnectReason)i[7].toInt(); p->m_score = (int)i[8].toInt(); p->m_rating = (int)i[9].toInt(); p->endpoint.tcp = tcp; p->endpoint.udp = udp; m_peers[p->id] = p; m_nodeTable->addNode(*p.get()); } } } } KeyPair Host::networkAlias(bytesConstRef _b) { RLP r(_b); if (r.itemCount() == 3 && r[0].isInt() && r[0].toInt() == 1) return move(KeyPair(move(Secret(r[1].toBytes())))); else return move(KeyPair::create()); }