/* This file is part of cpp-ethereum. cpp-ethereum is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. cpp-ethereum is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with cpp-ethereum. If not, see . */ /** @file SHA3.cpp * @author Gav Wood * @date 2014 */ #include "SHA3.h" #include #include #include #include #include #include "picosha2.h" using namespace std; using namespace dev; namespace dev { h256 EmptySHA3 = sha3(bytesConstRef()); h256 EmptyListSHA3 = sha3(rlpList()); namespace keccak { /** libkeccak-tiny * * A single-file implementation of SHA-3 and SHAKE. * * Implementor: David Leon Gil * License: CC0, attribution kindly requested. Blame taken too, * but not liability. */ #define decshake(bits) \ int shake##bits(uint8_t*, size_t, const uint8_t*, size_t); #define decsha3(bits) \ int sha3_##bits(uint8_t*, size_t, const uint8_t*, size_t); decshake(128) decshake(256) decsha3(224) decsha3(256) decsha3(384) decsha3(512) /******** The Keccak-f[1600] permutation ********/ /*** Constants. ***/ static const uint8_t rho[24] = \ { 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 2, 14, 27, 41, 56, 8, 25, 43, 62, 18, 39, 61, 20, 44}; static const uint8_t pi[24] = \ {10, 7, 11, 17, 18, 3, 5, 16, 8, 21, 24, 4, 15, 23, 19, 13, 12, 2, 20, 14, 22, 9, 6, 1}; static const uint64_t RC[24] = \ {1ULL, 0x8082ULL, 0x800000000000808aULL, 0x8000000080008000ULL, 0x808bULL, 0x80000001ULL, 0x8000000080008081ULL, 0x8000000000008009ULL, 0x8aULL, 0x88ULL, 0x80008009ULL, 0x8000000aULL, 0x8000808bULL, 0x800000000000008bULL, 0x8000000000008089ULL, 0x8000000000008003ULL, 0x8000000000008002ULL, 0x8000000000000080ULL, 0x800aULL, 0x800000008000000aULL, 0x8000000080008081ULL, 0x8000000000008080ULL, 0x80000001ULL, 0x8000000080008008ULL}; /*** Helper macros to unroll the permutation. ***/ #define rol(x, s) (((x) << s) | ((x) >> (64 - s))) #define REPEAT6(e) e e e e e e #define REPEAT24(e) REPEAT6(e e e e) #define REPEAT5(e) e e e e e #define FOR5(v, s, e) \ v = 0; \ REPEAT5(e; v += s;) /*** Keccak-f[1600] ***/ static inline void keccakf(void* state) { uint64_t* a = (uint64_t*)state; uint64_t b[5] = {0}; uint64_t t = 0; uint8_t x, y; for (int i = 0; i < 24; i++) { // Theta FOR5(x, 1, b[x] = 0; FOR5(y, 5, b[x] ^= a[x + y]; )) FOR5(x, 1, FOR5(y, 5, a[y + x] ^= b[(x + 4) % 5] ^ rol(b[(x + 1) % 5], 1); )) // Rho and pi t = a[1]; x = 0; REPEAT24(b[0] = a[pi[x]]; a[pi[x]] = rol(t, rho[x]); t = b[0]; x++; ) // Chi FOR5(y, 5, FOR5(x, 1, b[x] = a[y + x];) FOR5(x, 1, a[y + x] = b[x] ^ ((~b[(x + 1) % 5]) & b[(x + 2) % 5]); )) // Iota a[0] ^= RC[i]; } } /******** The FIPS202-defined functions. ********/ /*** Some helper macros. ***/ #define _(S) do { S } while (0) #define FOR(i, ST, L, S) \ _(for (size_t i = 0; i < L; i += ST) { S; }) #define mkapply_ds(NAME, S) \ static inline void NAME(uint8_t* dst, \ const uint8_t* src, \ size_t len) { \ FOR(i, 1, len, S); \ } #define mkapply_sd(NAME, S) \ static inline void NAME(const uint8_t* src, \ uint8_t* dst, \ size_t len) { \ FOR(i, 1, len, S); \ } mkapply_ds(xorin, dst[i] ^= src[i]) // xorin mkapply_sd(setout, dst[i] = src[i]) // setout #define P keccakf #define Plen 200 // Fold P*F over the full blocks of an input. #define foldP(I, L, F) \ while (L >= rate) { \ F(a, I, rate); \ P(a); \ I += rate; \ L -= rate; \ } /** The sponge-based hash construction. **/ static inline int hash(uint8_t* out, size_t outlen, const uint8_t* in, size_t inlen, size_t rate, uint8_t delim) { if ((out == NULL) || ((in == NULL) && inlen != 0) || (rate >= Plen)) { return -1; } uint8_t a[Plen] = {0}; // Absorb input. foldP(in, inlen, xorin); // Xor in the DS and pad frame. a[inlen] ^= delim; a[rate - 1] ^= 0x80; // Xor in the last block. xorin(a, in, inlen); // Apply P P(a); // Squeeze output. foldP(out, outlen, setout); setout(a, out, outlen); memset(a, 0, 200); return 0; } /*** Helper macros to define SHA3 and SHAKE instances. ***/ #define defshake(bits) \ int shake##bits(uint8_t* out, size_t outlen, \ const uint8_t* in, size_t inlen) { \ return hash(out, outlen, in, inlen, 200 - (bits / 4), 0x1f); \ } #define defsha3(bits) \ int sha3_##bits(uint8_t* out, size_t outlen, \ const uint8_t* in, size_t inlen) { \ if (outlen > (bits/8)) { \ return -1; \ } \ return hash(out, outlen, in, inlen, 200 - (bits / 4), 0x01); \ } /*** FIPS202 SHAKE VOFs ***/ defshake(128) defshake(256) /*** FIPS202 SHA3 FOFs ***/ defsha3(224) defsha3(256) defsha3(384) defsha3(512) } bool sha3(bytesConstRef _input, bytesRef o_output) { // FIXME: What with unaligned memory? if (o_output.size() != 32) return false; keccak::sha3_256(o_output.data(), 32, _input.data(), _input.size()); // keccak::keccak(ret.data(), 32, (uint64_t const*)_input.data(), _input.size()); return true; } }