You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1285 lines
33 KiB
1285 lines
33 KiB
/*
|
|
This file is part of cpp-ethereum.
|
|
|
|
cpp-ethereum is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
cpp-ethereum is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with cpp-ethereum. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
/** @file State.cpp
|
|
* @author Gav Wood <i@gavwood.com>
|
|
* @date 2014
|
|
*/
|
|
|
|
#include "State.h"
|
|
|
|
#include <boost/filesystem.hpp>
|
|
#include <time.h>
|
|
#include <random>
|
|
#include <secp256k1/secp256k1.h>
|
|
#include <libevmface/Instruction.h>
|
|
#include <libethcore/Exceptions.h>
|
|
#include <libethcore/Dagger.h>
|
|
#include <libevm/VM.h>
|
|
#include "BlockChain.h"
|
|
#include "Defaults.h"
|
|
#include "ExtVM.h"
|
|
using namespace std;
|
|
using namespace dev;
|
|
using namespace dev::eth;
|
|
|
|
#define ctrace clog(StateTrace)
|
|
|
|
static const u256 c_blockReward = 1500 * finney;
|
|
|
|
OverlayDB State::openDB(std::string _path, bool _killExisting)
|
|
{
|
|
if (_path.empty())
|
|
_path = Defaults::get()->m_dbPath;
|
|
boost::filesystem::create_directory(_path);
|
|
|
|
if (_killExisting)
|
|
boost::filesystem::remove_all(_path + "/state");
|
|
|
|
ldb::Options o;
|
|
o.create_if_missing = true;
|
|
ldb::DB* db = nullptr;
|
|
ldb::DB::Open(o, _path + "/state", &db);
|
|
if (!db)
|
|
throw DatabaseAlreadyOpen();
|
|
|
|
cnote << "Opened state DB.";
|
|
return OverlayDB(db);
|
|
}
|
|
|
|
State::State(Address _coinbaseAddress, OverlayDB const& _db):
|
|
m_db(_db),
|
|
m_state(&m_db),
|
|
m_ourAddress(_coinbaseAddress),
|
|
m_blockReward(c_blockReward)
|
|
{
|
|
secp256k1_start();
|
|
|
|
// Initialise to the state entailed by the genesis block; this guarantees the trie is built correctly.
|
|
m_state.init();
|
|
|
|
paranoia("beginning of normal construction.", true);
|
|
|
|
dev::eth::commit(genesisState(), m_db, m_state);
|
|
m_db.commit();
|
|
|
|
paranoia("after DB commit of normal construction.", true);
|
|
|
|
m_previousBlock = BlockChain::genesis();
|
|
resetCurrent();
|
|
|
|
assert(m_state.root() == m_previousBlock.stateRoot);
|
|
|
|
paranoia("end of normal construction.", true);
|
|
}
|
|
|
|
State::State(OverlayDB const& _db, BlockChain const& _bc, h256 _h):
|
|
m_db(_db),
|
|
m_state(&m_db),
|
|
m_blockReward(c_blockReward)
|
|
{
|
|
secp256k1_start();
|
|
|
|
// TODO THINK: is this necessary?
|
|
m_state.init();
|
|
|
|
auto b = _bc.block(_h);
|
|
BlockInfo bi;
|
|
BlockInfo bip;
|
|
if (_h)
|
|
bi.populate(b);
|
|
if (bi && bi.number)
|
|
bip.populate(_bc.block(bi.parentHash));
|
|
if (!_h || !bip)
|
|
return;
|
|
m_ourAddress = bi.coinbaseAddress;
|
|
|
|
sync(_bc, bi.parentHash, bip);
|
|
enact(&b);
|
|
}
|
|
|
|
State::State(State const& _s):
|
|
m_db(_s.m_db),
|
|
m_state(&m_db, _s.m_state.root()),
|
|
m_transactions(_s.m_transactions),
|
|
m_transactionSet(_s.m_transactionSet),
|
|
m_cache(_s.m_cache),
|
|
m_previousBlock(_s.m_previousBlock),
|
|
m_currentBlock(_s.m_currentBlock),
|
|
m_ourAddress(_s.m_ourAddress),
|
|
m_blockReward(_s.m_blockReward)
|
|
{
|
|
paranoia("after state cloning (copy cons).", true);
|
|
}
|
|
|
|
void State::paranoia(std::string const& _when, bool _enforceRefs) const
|
|
{
|
|
#if ETH_PARANOIA
|
|
// TODO: variable on context; just need to work out when there should be no leftovers
|
|
// [in general this is hard since contract alteration will result in nodes in the DB that are no directly part of the state DB].
|
|
if (!isTrieGood(_enforceRefs, false))
|
|
{
|
|
cwarn << "BAD TRIE" << _when;
|
|
throw InvalidTrie();
|
|
}
|
|
#else
|
|
(void)_when;
|
|
(void)_enforceRefs;
|
|
#endif
|
|
}
|
|
|
|
State& State::operator=(State const& _s)
|
|
{
|
|
m_db = _s.m_db;
|
|
m_state.open(&m_db, _s.m_state.root());
|
|
m_transactions = _s.m_transactions;
|
|
m_transactionSet = _s.m_transactionSet;
|
|
m_cache = _s.m_cache;
|
|
m_previousBlock = _s.m_previousBlock;
|
|
m_currentBlock = _s.m_currentBlock;
|
|
m_ourAddress = _s.m_ourAddress;
|
|
m_blockReward = _s.m_blockReward;
|
|
paranoia("after state cloning (assignment op)", true);
|
|
return *this;
|
|
}
|
|
|
|
struct CachedAddressState
|
|
{
|
|
CachedAddressState(std::string const& _rlp, AddressState const* _s, OverlayDB const* _o): rS(_rlp), r(rS), s(_s), o(_o) {}
|
|
|
|
bool exists() const
|
|
{
|
|
return (r && (!s || s->isAlive())) || (s && s->isAlive());
|
|
}
|
|
|
|
u256 balance() const
|
|
{
|
|
return r ? s ? s->balance() : r[1].toInt<u256>() : 0;
|
|
}
|
|
|
|
u256 nonce() const
|
|
{
|
|
return r ? s ? s->nonce() : r[0].toInt<u256>() : 0;
|
|
}
|
|
|
|
bytes code() const
|
|
{
|
|
if (s && s->codeCacheValid())
|
|
return s->code();
|
|
h256 h = r ? s ? s->codeHash() : r[3].toHash<h256>() : EmptySHA3;
|
|
return h == EmptySHA3 ? bytes() : asBytes(o->lookup(h));
|
|
}
|
|
|
|
std::map<u256, u256> storage() const
|
|
{
|
|
std::map<u256, u256> ret;
|
|
if (r)
|
|
{
|
|
TrieDB<h256, OverlayDB> memdb(const_cast<OverlayDB*>(o), r[2].toHash<h256>()); // promise we won't alter the overlay! :)
|
|
for (auto const& j: memdb)
|
|
ret[j.first] = RLP(j.second).toInt<u256>();
|
|
}
|
|
if (s)
|
|
for (auto const& j: s->storage())
|
|
if ((!ret.count(j.first) && j.second) || (ret.count(j.first) && ret.at(j.first) != j.second))
|
|
ret[j.first] = j.second;
|
|
return ret;
|
|
}
|
|
|
|
AccountDiff diff(CachedAddressState const& _c)
|
|
{
|
|
AccountDiff ret;
|
|
ret.exist = Diff<bool>(exists(), _c.exists());
|
|
ret.balance = Diff<u256>(balance(), _c.balance());
|
|
ret.nonce = Diff<u256>(nonce(), _c.nonce());
|
|
ret.code = Diff<bytes>(code(), _c.code());
|
|
auto st = storage();
|
|
auto cst = _c.storage();
|
|
auto it = st.begin();
|
|
auto cit = cst.begin();
|
|
while (it != st.end() || cit != cst.end())
|
|
{
|
|
if (it != st.end() && cit != cst.end() && it->first == cit->first && (it->second || cit->second) && (it->second != cit->second))
|
|
ret.storage[it->first] = Diff<u256>(it->second, cit->second);
|
|
else if (it != st.end() && (cit == cst.end() || it->first < cit->first) && it->second)
|
|
ret.storage[it->first] = Diff<u256>(it->second, 0);
|
|
else if (cit != cst.end() && (it == st.end() || it->first > cit->first) && cit->second)
|
|
ret.storage[cit->first] = Diff<u256>(0, cit->second);
|
|
if (it == st.end())
|
|
++cit;
|
|
else if (cit == cst.end())
|
|
++it;
|
|
else if (it->first < cit->first)
|
|
++it;
|
|
else if (it->first > cit->first)
|
|
++cit;
|
|
else
|
|
++it, ++cit;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
std::string rS;
|
|
RLP r;
|
|
AddressState const* s;
|
|
OverlayDB const* o;
|
|
};
|
|
|
|
StateDiff State::diff(State const& _c) const
|
|
{
|
|
StateDiff ret;
|
|
|
|
std::set<Address> ads;
|
|
std::set<Address> trieAds;
|
|
std::set<Address> trieAdsD;
|
|
|
|
auto trie = TrieDB<Address, OverlayDB>(const_cast<OverlayDB*>(&m_db), rootHash());
|
|
auto trieD = TrieDB<Address, OverlayDB>(const_cast<OverlayDB*>(&_c.m_db), _c.rootHash());
|
|
|
|
for (auto i: trie)
|
|
ads.insert(i.first), trieAds.insert(i.first);
|
|
for (auto i: trieD)
|
|
ads.insert(i.first), trieAdsD.insert(i.first);
|
|
for (auto i: m_cache)
|
|
ads.insert(i.first);
|
|
for (auto i: _c.m_cache)
|
|
ads.insert(i.first);
|
|
|
|
for (auto i: ads)
|
|
{
|
|
auto it = m_cache.find(i);
|
|
auto itD = _c.m_cache.find(i);
|
|
CachedAddressState source(trieAds.count(i) ? trie.at(i) : "", it != m_cache.end() ? &it->second : nullptr, &m_db);
|
|
CachedAddressState dest(trieAdsD.count(i) ? trieD.at(i) : "", itD != _c.m_cache.end() ? &itD->second : nullptr, &_c.m_db);
|
|
AccountDiff acd = source.diff(dest);
|
|
if (acd.changed())
|
|
ret.accounts[i] = acd;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void State::ensureCached(Address _a, bool _requireCode, bool _forceCreate) const
|
|
{
|
|
ensureCached(m_cache, _a, _requireCode, _forceCreate);
|
|
}
|
|
|
|
void State::ensureCached(std::map<Address, AddressState>& _cache, Address _a, bool _requireCode, bool _forceCreate) const
|
|
{
|
|
auto it = _cache.find(_a);
|
|
if (it == _cache.end())
|
|
{
|
|
// populate basic info.
|
|
string stateBack = m_state.at(_a);
|
|
if (stateBack.empty() && !_forceCreate)
|
|
return;
|
|
RLP state(stateBack);
|
|
AddressState s;
|
|
if (state.isNull())
|
|
s = AddressState(0, 0, h256(), EmptySHA3);
|
|
else
|
|
s = AddressState(state[0].toInt<u256>(), state[1].toInt<u256>(), state[2].toHash<h256>(), state[3].isEmpty() ? EmptySHA3 : state[3].toHash<h256>());
|
|
bool ok;
|
|
tie(it, ok) = _cache.insert(make_pair(_a, s));
|
|
}
|
|
if (_requireCode && it != _cache.end() && !it->second.isFreshCode() && !it->second.codeCacheValid())
|
|
it->second.noteCode(it->second.codeHash() == EmptySHA3 ? bytesConstRef() : bytesConstRef(m_db.lookup(it->second.codeHash())));
|
|
}
|
|
|
|
void State::commit()
|
|
{
|
|
dev::eth::commit(m_cache, m_db, m_state);
|
|
m_cache.clear();
|
|
}
|
|
|
|
bool State::sync(BlockChain const& _bc)
|
|
{
|
|
return sync(_bc, _bc.currentHash());
|
|
}
|
|
|
|
bool State::sync(BlockChain const& _bc, h256 _block, BlockInfo const& _bi)
|
|
{
|
|
bool ret = false;
|
|
// BLOCK
|
|
BlockInfo bi = _bi;
|
|
if (!bi)
|
|
while (1)
|
|
{
|
|
try
|
|
{
|
|
auto b = _bc.block(_block);
|
|
bi.populate(b);
|
|
// bi.verifyInternals(_bc.block(_block)); // Unneeded - we already verify on import into the blockchain.
|
|
break;
|
|
}
|
|
catch (Exception const& _e)
|
|
{
|
|
// TODO: Slightly nicer handling? :-)
|
|
cerr << "ERROR: Corrupt block-chain! Delete your block-chain DB and restart." << endl;
|
|
cerr << _e.description() << endl;
|
|
}
|
|
catch (std::exception const& _e)
|
|
{
|
|
// TODO: Slightly nicer handling? :-)
|
|
cerr << "ERROR: Corrupt block-chain! Delete your block-chain DB and restart." << endl;
|
|
cerr << _e.what() << endl;
|
|
}
|
|
}
|
|
if (bi == m_currentBlock)
|
|
{
|
|
// We mined the last block.
|
|
// Our state is good - we just need to move on to next.
|
|
m_previousBlock = m_currentBlock;
|
|
resetCurrent();
|
|
ret = true;
|
|
}
|
|
else if (bi == m_previousBlock)
|
|
{
|
|
// No change since last sync.
|
|
// Carry on as we were.
|
|
}
|
|
else
|
|
{
|
|
// New blocks available, or we've switched to a different branch. All change.
|
|
// Find most recent state dump and replay what's left.
|
|
// (Most recent state dump might end up being genesis.)
|
|
|
|
std::vector<h256> chain;
|
|
while (bi.stateRoot != BlockChain::genesis().hash && m_db.lookup(bi.stateRoot).empty()) // while we don't have the state root of the latest block...
|
|
{
|
|
chain.push_back(bi.hash); // push back for later replay.
|
|
bi.populate(_bc.block(bi.parentHash)); // move to parent.
|
|
}
|
|
|
|
m_previousBlock = bi;
|
|
resetCurrent();
|
|
|
|
// Iterate through in reverse, playing back each of the blocks.
|
|
try
|
|
{
|
|
for (auto it = chain.rbegin(); it != chain.rend(); ++it)
|
|
{
|
|
auto b = _bc.block(*it);
|
|
enact(&b);
|
|
cleanup(true);
|
|
}
|
|
}
|
|
catch (...)
|
|
{
|
|
// TODO: Slightly nicer handling? :-)
|
|
cerr << "ERROR: Corrupt block-chain! Delete your block-chain DB and restart." << endl;
|
|
exit(1);
|
|
}
|
|
|
|
resetCurrent();
|
|
ret = true;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
u256 State::enactOn(bytesConstRef _block, BlockInfo const& _bi, BlockChain const& _bc)
|
|
{
|
|
// Check family:
|
|
BlockInfo biParent(_bc.block(_bi.parentHash));
|
|
_bi.verifyParent(biParent);
|
|
BlockInfo biGrandParent;
|
|
if (biParent.number)
|
|
biGrandParent.populate(_bc.block(biParent.parentHash));
|
|
sync(_bc, _bi.parentHash);
|
|
resetCurrent();
|
|
m_previousBlock = biParent;
|
|
return enact(_block, &_bc);
|
|
}
|
|
|
|
map<Address, u256> State::addresses() const
|
|
{
|
|
map<Address, u256> ret;
|
|
for (auto i: m_cache)
|
|
if (i.second.isAlive())
|
|
ret[i.first] = i.second.balance();
|
|
for (auto const& i: m_state)
|
|
if (m_cache.find(i.first) == m_cache.end())
|
|
ret[i.first] = RLP(i.second)[1].toInt<u256>();
|
|
return ret;
|
|
}
|
|
|
|
void State::resetCurrent()
|
|
{
|
|
m_transactions.clear();
|
|
m_transactionSet.clear();
|
|
m_cache.clear();
|
|
m_currentBlock = BlockInfo();
|
|
m_currentBlock.coinbaseAddress = m_ourAddress;
|
|
m_currentBlock.timestamp = time(0);
|
|
m_currentBlock.transactionsRoot = h256();
|
|
m_currentBlock.sha3Uncles = h256();
|
|
m_currentBlock.minGasPrice = 10 * szabo;
|
|
m_currentBlock.populateFromParent(m_previousBlock);
|
|
|
|
// Update timestamp according to clock.
|
|
// TODO: check.
|
|
|
|
m_lastTx = m_db;
|
|
m_state.setRoot(m_previousBlock.stateRoot);
|
|
|
|
paranoia("begin resetCurrent", true);
|
|
}
|
|
|
|
bool State::cull(TransactionQueue& _tq) const
|
|
{
|
|
bool ret = false;
|
|
auto ts = _tq.transactions();
|
|
for (auto const& i: ts)
|
|
{
|
|
if (!m_transactionSet.count(i.first))
|
|
{
|
|
try
|
|
{
|
|
Transaction t(i.second);
|
|
if (t.nonce <= transactionsFrom(t.sender()))
|
|
{
|
|
_tq.drop(i.first);
|
|
ret = true;
|
|
}
|
|
}
|
|
catch (...)
|
|
{
|
|
_tq.drop(i.first);
|
|
ret = true;
|
|
}
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
h256s State::sync(TransactionQueue& _tq, bool* o_transactionQueueChanged)
|
|
{
|
|
// TRANSACTIONS
|
|
h256s ret;
|
|
auto ts = _tq.transactions();
|
|
|
|
for (int goodTxs = 1; goodTxs;)
|
|
{
|
|
goodTxs = 0;
|
|
for (auto const& i: ts)
|
|
if (!m_transactionSet.count(i.first))
|
|
{
|
|
// don't have it yet! Execute it now.
|
|
try
|
|
{
|
|
uncommitToMine();
|
|
execute(i.second);
|
|
ret.push_back(m_transactions.back().changes.bloom());
|
|
_tq.noteGood(i);
|
|
++goodTxs;
|
|
}
|
|
catch (InvalidNonce const& in)
|
|
{
|
|
if (in.required > in.candidate)
|
|
{
|
|
// too old
|
|
_tq.drop(i.first);
|
|
if (o_transactionQueueChanged)
|
|
*o_transactionQueueChanged = true;
|
|
}
|
|
else
|
|
_tq.setFuture(i);
|
|
}
|
|
catch (std::exception const&)
|
|
{
|
|
// Something else went wrong - drop it.
|
|
_tq.drop(i.first);
|
|
if (o_transactionQueueChanged)
|
|
*o_transactionQueueChanged = true;
|
|
}
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
u256 State::enact(bytesConstRef _block, BlockChain const* _bc, bool _checkNonce)
|
|
{
|
|
// m_currentBlock is assumed to be prepopulated and reset.
|
|
|
|
#if !ETH_RELEASE
|
|
BlockInfo bi(_block);
|
|
assert(m_previousBlock.hash == bi.parentHash);
|
|
assert(m_currentBlock.parentHash == bi.parentHash);
|
|
assert(rootHash() == m_previousBlock.stateRoot);
|
|
#endif
|
|
|
|
if (m_currentBlock.parentHash != m_previousBlock.hash)
|
|
throw InvalidParentHash();
|
|
|
|
// Populate m_currentBlock with the correct values.
|
|
m_currentBlock.populate(_block, _checkNonce);
|
|
m_currentBlock.verifyInternals(_block);
|
|
|
|
// cnote << "playback begins:" << m_state.root();
|
|
// cnote << m_state;
|
|
|
|
MemoryDB tm;
|
|
GenericTrieDB<MemoryDB> transactionManifest(&tm);
|
|
transactionManifest.init();
|
|
|
|
// All ok with the block generally. Play back the transactions now...
|
|
unsigned i = 0;
|
|
for (auto const& tr: RLP(_block)[1])
|
|
{
|
|
// cnote << m_state.root() << m_state;
|
|
// cnote << *this;
|
|
execute(tr[0].data());
|
|
if (tr[1].toHash<h256>() != m_state.root())
|
|
{
|
|
// Invalid state root
|
|
cnote << m_state.root() << "\n" << m_state;
|
|
cnote << *this;
|
|
cnote << "INVALID: " << tr[1].toHash<h256>();
|
|
throw InvalidTransactionStateRoot();
|
|
}
|
|
if (tr[2].toInt<u256>() != gasUsed())
|
|
throw InvalidTransactionGasUsed();
|
|
bytes k = rlp(i);
|
|
transactionManifest.insert(&k, tr.data());
|
|
++i;
|
|
}
|
|
|
|
if (m_currentBlock.transactionsRoot && transactionManifest.root() != m_currentBlock.transactionsRoot)
|
|
{
|
|
cwarn << "Bad transactions state root!";
|
|
throw InvalidTransactionStateRoot();
|
|
}
|
|
|
|
// Initialise total difficulty calculation.
|
|
u256 tdIncrease = m_currentBlock.difficulty;
|
|
|
|
// Check uncles & apply their rewards to state.
|
|
set<h256> nonces = { m_currentBlock.nonce };
|
|
Addresses rewarded;
|
|
set<h256> knownUncles = _bc ? _bc->allUnclesFrom(m_currentBlock.parentHash) : set<h256>();
|
|
for (auto const& i: RLP(_block)[2])
|
|
{
|
|
BlockInfo uncle = BlockInfo::fromHeader(i.data());
|
|
if (nonces.count(uncle.nonce))
|
|
throw DuplicateUncleNonce();
|
|
if (_bc)
|
|
{
|
|
BlockInfo uncleParent(_bc->block(uncle.parentHash));
|
|
if ((bigint)uncleParent.number < (bigint)m_currentBlock.number - 6)
|
|
throw UncleTooOld();
|
|
if (knownUncles.count(sha3(i.data())))
|
|
throw UncleInChain();
|
|
uncle.verifyParent(uncleParent);
|
|
}
|
|
|
|
nonces.insert(uncle.nonce);
|
|
tdIncrease += uncle.difficulty;
|
|
rewarded.push_back(uncle.coinbaseAddress);
|
|
}
|
|
applyRewards(rewarded);
|
|
|
|
// Commit all cached state changes to the state trie.
|
|
commit();
|
|
|
|
// Hash the state trie and check against the state_root hash in m_currentBlock.
|
|
if (m_currentBlock.stateRoot != m_previousBlock.stateRoot && m_currentBlock.stateRoot != rootHash())
|
|
{
|
|
cwarn << "Bad state root!";
|
|
cnote << "Given to be:" << m_currentBlock.stateRoot;
|
|
cnote << TrieDB<Address, OverlayDB>(&m_db, m_currentBlock.stateRoot);
|
|
cnote << "Calculated to be:" << rootHash();
|
|
cnote << m_state;
|
|
cnote << *this;
|
|
// Rollback the trie.
|
|
m_db.rollback();
|
|
throw InvalidStateRoot();
|
|
}
|
|
|
|
return tdIncrease;
|
|
}
|
|
|
|
void State::cleanup(bool _fullCommit)
|
|
{
|
|
if (_fullCommit)
|
|
{
|
|
paranoia("immediately before database commit", true);
|
|
|
|
// Commit the new trie to disk.
|
|
m_db.commit();
|
|
|
|
paranoia("immediately after database commit", true);
|
|
m_previousBlock = m_currentBlock;
|
|
}
|
|
else
|
|
{
|
|
m_db.rollback();
|
|
}
|
|
|
|
resetCurrent();
|
|
}
|
|
|
|
void State::uncommitToMine()
|
|
{
|
|
if (m_currentBlock.sha3Uncles)
|
|
{
|
|
m_cache.clear();
|
|
if (!m_transactions.size())
|
|
m_state.setRoot(m_previousBlock.stateRoot);
|
|
else
|
|
m_state.setRoot(m_transactions[m_transactions.size() - 1].stateRoot);
|
|
m_db = m_lastTx;
|
|
paranoia("Uncommited to mine", true);
|
|
m_currentBlock.sha3Uncles = h256();
|
|
}
|
|
}
|
|
|
|
bool State::amIJustParanoid(BlockChain const& _bc)
|
|
{
|
|
commitToMine(_bc);
|
|
|
|
// Update difficulty according to timestamp.
|
|
m_currentBlock.difficulty = m_currentBlock.calculateDifficulty(m_previousBlock);
|
|
|
|
// Compile block:
|
|
RLPStream block;
|
|
block.appendList(3);
|
|
m_currentBlock.fillStream(block, true);
|
|
block.appendRaw(m_currentTxs);
|
|
block.appendRaw(m_currentUncles);
|
|
|
|
State s(*this);
|
|
s.resetCurrent();
|
|
try
|
|
{
|
|
cnote << "PARANOIA root:" << s.rootHash();
|
|
// s.m_currentBlock.populate(&block.out(), false);
|
|
// s.m_currentBlock.verifyInternals(&block.out());
|
|
s.enact(&block.out(), &_bc, false); // don't check nonce for this since we haven't mined it yet.
|
|
s.cleanup(false);
|
|
return true;
|
|
}
|
|
catch (Exception const& e)
|
|
{
|
|
cwarn << "Bad block: " << e.description();
|
|
}
|
|
catch (std::exception const& e)
|
|
{
|
|
cwarn << "Bad block: " << e.what();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
h256 State::bloom() const
|
|
{
|
|
h256 ret = m_currentBlock.coinbaseAddress.bloom();
|
|
for (auto const& i: m_transactions)
|
|
ret |= i.changes.bloom();
|
|
return ret;
|
|
}
|
|
|
|
// @returns the block that represents the difference between m_previousBlock and m_currentBlock.
|
|
// (i.e. all the transactions we executed).
|
|
void State::commitToMine(BlockChain const& _bc)
|
|
{
|
|
uncommitToMine();
|
|
|
|
cnote << "Committing to mine on block" << m_previousBlock.hash.abridged();
|
|
#ifdef ETH_PARANOIA
|
|
commit();
|
|
cnote << "Pre-reward stateRoot:" << m_state.root();
|
|
#endif
|
|
|
|
m_lastTx = m_db;
|
|
|
|
Addresses uncleAddresses;
|
|
|
|
RLPStream unclesData;
|
|
unsigned unclesCount = 0;
|
|
if (m_previousBlock != BlockChain::genesis())
|
|
{
|
|
// Find great-uncles (or second-cousins or whatever they are) - children of great-grandparents, great-great-grandparents... that were not already uncles in previous generations.
|
|
// cout << "Checking " << m_previousBlock.hash << ", parent=" << m_previousBlock.parentHash << endl;
|
|
set<h256> knownUncles = _bc.allUnclesFrom(m_currentBlock.parentHash);
|
|
auto p = m_previousBlock.parentHash;
|
|
for (unsigned gen = 0; gen < 6 && p != _bc.genesisHash(); ++gen, p = _bc.details(p).parent)
|
|
{
|
|
auto us = _bc.details(p).children;
|
|
assert(us.size() >= 1); // must be at least 1 child of our grandparent - it's our own parent!
|
|
for (auto const& u: us)
|
|
if (!knownUncles.count(BlockInfo::headerHash(_bc.block(u)))) // ignore any uncles/mainline blocks that we know about. We use header-hash for this.
|
|
{
|
|
BlockInfo ubi(_bc.block(u));
|
|
ubi.fillStream(unclesData, true);
|
|
++unclesCount;
|
|
uncleAddresses.push_back(ubi.coinbaseAddress);
|
|
}
|
|
}
|
|
}
|
|
|
|
MemoryDB tm;
|
|
GenericTrieDB<MemoryDB> transactionReceipts(&tm);
|
|
transactionReceipts.init();
|
|
|
|
RLPStream txs;
|
|
txs.appendList(m_transactions.size());
|
|
|
|
for (unsigned i = 0; i < m_transactions.size(); ++i)
|
|
{
|
|
RLPStream k;
|
|
k << i;
|
|
RLPStream v;
|
|
m_transactions[i].fillStream(v);
|
|
transactionReceipts.insert(&k.out(), &v.out());
|
|
txs.appendRaw(v.out());
|
|
}
|
|
|
|
txs.swapOut(m_currentTxs);
|
|
|
|
RLPStream(unclesCount).appendRaw(unclesData.out(), unclesCount).swapOut(m_currentUncles);
|
|
|
|
m_currentBlock.transactionsRoot = transactionReceipts.root();
|
|
m_currentBlock.sha3Uncles = sha3(m_currentUncles);
|
|
|
|
// Apply rewards last of all.
|
|
applyRewards(uncleAddresses);
|
|
|
|
// Commit any and all changes to the trie that are in the cache, then update the state root accordingly.
|
|
commit();
|
|
|
|
cnote << "Post-reward stateRoot:" << m_state.root().abridged();
|
|
// cnote << m_state;
|
|
// cnote << *this;
|
|
|
|
m_currentBlock.gasUsed = gasUsed();
|
|
m_currentBlock.stateRoot = m_state.root();
|
|
m_currentBlock.parentHash = m_previousBlock.hash;
|
|
}
|
|
|
|
MineInfo State::mine(unsigned _msTimeout, bool _turbo)
|
|
{
|
|
// Update difficulty according to timestamp.
|
|
m_currentBlock.difficulty = m_currentBlock.calculateDifficulty(m_previousBlock);
|
|
|
|
// TODO: Miner class that keeps dagger between mine calls (or just non-polling mining).
|
|
auto ret = m_dagger.mine(/*out*/m_currentBlock.nonce, m_currentBlock.headerHashWithoutNonce(), m_currentBlock.difficulty, _msTimeout, true, _turbo);
|
|
|
|
if (!ret.completed)
|
|
m_currentBytes.clear();
|
|
|
|
return ret;
|
|
}
|
|
|
|
void State::completeMine()
|
|
{
|
|
cdebug << "Completing mine!";
|
|
// Got it!
|
|
|
|
// Compile block:
|
|
RLPStream ret;
|
|
ret.appendList(3);
|
|
m_currentBlock.fillStream(ret, true);
|
|
ret.appendRaw(m_currentTxs);
|
|
ret.appendRaw(m_currentUncles);
|
|
ret.swapOut(m_currentBytes);
|
|
m_currentBlock.hash = sha3(m_currentBytes);
|
|
cnote << "Mined " << m_currentBlock.hash.abridged() << "(parent: " << m_currentBlock.parentHash.abridged() << ")";
|
|
|
|
// Quickly reset the transactions.
|
|
// TODO: Leave this in a better state than this limbo, or at least record that it's in limbo.
|
|
m_transactions.clear();
|
|
m_transactionSet.clear();
|
|
m_lastTx = m_db;
|
|
}
|
|
|
|
bool State::addressInUse(Address _id) const
|
|
{
|
|
ensureCached(_id, false, false);
|
|
auto it = m_cache.find(_id);
|
|
if (it == m_cache.end())
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
bool State::addressHasCode(Address _id) const
|
|
{
|
|
ensureCached(_id, false, false);
|
|
auto it = m_cache.find(_id);
|
|
if (it == m_cache.end())
|
|
return false;
|
|
return it->second.isFreshCode() || it->second.codeHash() != EmptySHA3;
|
|
}
|
|
|
|
u256 State::balance(Address _id) const
|
|
{
|
|
ensureCached(_id, false, false);
|
|
auto it = m_cache.find(_id);
|
|
if (it == m_cache.end())
|
|
return 0;
|
|
return it->second.balance();
|
|
}
|
|
|
|
void State::noteSending(Address _id)
|
|
{
|
|
ensureCached(_id, false, false);
|
|
auto it = m_cache.find(_id);
|
|
if (it == m_cache.end())
|
|
m_cache[_id] = AddressState(1, 0, h256(), EmptySHA3);
|
|
else
|
|
it->second.incNonce();
|
|
}
|
|
|
|
void State::addBalance(Address _id, u256 _amount)
|
|
{
|
|
ensureCached(_id, false, false);
|
|
auto it = m_cache.find(_id);
|
|
if (it == m_cache.end())
|
|
m_cache[_id] = AddressState(0, _amount, h256(), EmptySHA3);
|
|
else
|
|
it->second.addBalance(_amount);
|
|
}
|
|
|
|
void State::subBalance(Address _id, bigint _amount)
|
|
{
|
|
ensureCached(_id, false, false);
|
|
auto it = m_cache.find(_id);
|
|
if (it == m_cache.end() || (bigint)it->second.balance() < _amount)
|
|
throw NotEnoughCash();
|
|
else
|
|
it->second.addBalance(-_amount);
|
|
}
|
|
|
|
u256 State::transactionsFrom(Address _id) const
|
|
{
|
|
ensureCached(_id, false, false);
|
|
auto it = m_cache.find(_id);
|
|
if (it == m_cache.end())
|
|
return 0;
|
|
else
|
|
return it->second.nonce();
|
|
}
|
|
|
|
u256 State::storage(Address _id, u256 _memory) const
|
|
{
|
|
ensureCached(_id, false, false);
|
|
auto it = m_cache.find(_id);
|
|
|
|
// Account doesn't exist - exit now.
|
|
if (it == m_cache.end())
|
|
return 0;
|
|
|
|
// See if it's in the account's storage cache.
|
|
auto mit = it->second.storage().find(_memory);
|
|
if (mit != it->second.storage().end())
|
|
return mit->second;
|
|
|
|
// Not in the storage cache - go to the DB.
|
|
TrieDB<h256, OverlayDB> memdb(const_cast<OverlayDB*>(&m_db), it->second.baseRoot()); // promise we won't change the overlay! :)
|
|
string payload = memdb.at(_memory);
|
|
u256 ret = payload.size() ? RLP(payload).toInt<u256>() : 0;
|
|
it->second.setStorage(_memory, ret);
|
|
return ret;
|
|
}
|
|
|
|
map<u256, u256> State::storage(Address _id) const
|
|
{
|
|
map<u256, u256> ret;
|
|
|
|
ensureCached(_id, false, false);
|
|
auto it = m_cache.find(_id);
|
|
if (it != m_cache.end())
|
|
{
|
|
// Pull out all values from trie storage.
|
|
if (it->second.baseRoot())
|
|
{
|
|
TrieDB<h256, OverlayDB> memdb(const_cast<OverlayDB*>(&m_db), it->second.baseRoot()); // promise we won't alter the overlay! :)
|
|
for (auto const& i: memdb)
|
|
ret[i.first] = RLP(i.second).toInt<u256>();
|
|
}
|
|
|
|
// Then merge cached storage over the top.
|
|
for (auto const& i: it->second.storage())
|
|
if (i.second)
|
|
ret[i.first] = i.second;
|
|
else
|
|
ret.erase(i.first);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
h256 State::storageRoot(Address _id) const
|
|
{
|
|
string s = m_state.at(_id);
|
|
if (s.size())
|
|
{
|
|
RLP r(s);
|
|
return r[2].toHash<h256>();
|
|
}
|
|
return h256();
|
|
}
|
|
|
|
bytes const& State::code(Address _contract) const
|
|
{
|
|
if (!addressHasCode(_contract))
|
|
return NullBytes;
|
|
ensureCached(_contract, true, false);
|
|
return m_cache[_contract].code();
|
|
}
|
|
|
|
bool State::isTrieGood(bool _enforceRefs, bool _requireNoLeftOvers) const
|
|
{
|
|
for (int e = 0; e < (_enforceRefs ? 2 : 1); ++e)
|
|
try
|
|
{
|
|
EnforceRefs r(m_db, !!e);
|
|
auto lo = m_state.leftOvers();
|
|
if (!lo.empty() && _requireNoLeftOvers)
|
|
{
|
|
cwarn << "LEFTOVERS" << (e ? "[enforced" : "[unenforced") << "refs]";
|
|
cnote << "Left:" << lo;
|
|
cnote << "Keys:" << m_db.keys();
|
|
m_state.debugStructure(cerr);
|
|
return false;
|
|
}
|
|
// TODO: Enable once fixed.
|
|
for (auto const& i: m_state)
|
|
{
|
|
RLP r(i.second);
|
|
TrieDB<h256, OverlayDB> storageDB(const_cast<OverlayDB*>(&m_db), r[2].toHash<h256>()); // promise not to alter OverlayDB.
|
|
for (auto const& j: storageDB) { (void)j; }
|
|
if (!e && r[3].toHash<h256>() != EmptySHA3 && m_db.lookup(r[3].toHash<h256>()).empty())
|
|
return false;
|
|
}
|
|
}
|
|
catch (InvalidTrie)
|
|
{
|
|
cwarn << "BAD TRIE" << (e ? "[enforced" : "[unenforced") << "refs]";
|
|
cnote << m_db.keys();
|
|
m_state.debugStructure(cerr);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// TODO: maintain node overlay revisions for stateroots -> each commit gives a stateroot + OverlayDB; allow overlay copying for rewind operations.
|
|
|
|
u256 State::execute(bytesConstRef _rlp, bytes* o_output, bool _commit)
|
|
{
|
|
#ifndef ETH_RELEASE
|
|
commit(); // get an updated hash
|
|
#endif
|
|
|
|
paranoia("start of execution.", true);
|
|
|
|
State old(*this);
|
|
#if ETH_PARANOIA
|
|
auto h = rootHash();
|
|
#endif
|
|
|
|
Manifest ms;
|
|
|
|
Executive e(*this, &ms);
|
|
e.setup(_rlp);
|
|
|
|
u256 startGasUsed = gasUsed();
|
|
|
|
#if ETH_PARANOIA
|
|
ctrace << "Executing" << e.t() << "on" << h;
|
|
ctrace << toHex(e.t().rlp(true));
|
|
#endif
|
|
|
|
e.go();
|
|
e.finalize();
|
|
|
|
#if ETH_PARANOIA
|
|
ctrace << "Ready for commit;";
|
|
ctrace << old.diff(*this);
|
|
#endif
|
|
|
|
if (o_output)
|
|
*o_output = e.out().toBytes();
|
|
|
|
if (!_commit)
|
|
{
|
|
m_cache.clear();
|
|
return e.gasUsed();
|
|
}
|
|
|
|
commit();
|
|
|
|
#if ETH_PARANOIA
|
|
ctrace << "Executed; now" << rootHash();
|
|
ctrace << old.diff(*this);
|
|
|
|
paranoia("after execution commit.", true);
|
|
|
|
if (e.t().receiveAddress)
|
|
{
|
|
EnforceRefs r(m_db, true);
|
|
if (storageRoot(e.t().receiveAddress) && m_db.lookup(storageRoot(e.t().receiveAddress)).empty())
|
|
{
|
|
cwarn << "TRIE immediately after execution; no node for receiveAddress";
|
|
throw InvalidTrie();
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// TODO: CHECK TRIE after level DB flush to make sure exactly the same.
|
|
|
|
// Add to the user-originated transactions that we've executed.
|
|
m_transactions.push_back(TransactionReceipt(e.t(), rootHash(), startGasUsed + e.gasUsed(), ms));
|
|
m_transactionSet.insert(e.t().sha3());
|
|
return e.gasUsed();
|
|
}
|
|
|
|
bool State::call(Address _receiveAddress, Address _codeAddress, Address _senderAddress, u256 _value, u256 _gasPrice, bytesConstRef _data, u256* _gas, bytesRef _out, Address _originAddress, std::set<Address>* o_suicides, PostList* o_posts, Manifest* o_ms, OnOpFunc const& _onOp, unsigned _level)
|
|
{
|
|
if (!_originAddress)
|
|
_originAddress = _senderAddress;
|
|
|
|
// cnote << "Transferring" << formatBalance(_value) << "to receiver.";
|
|
addBalance(_receiveAddress, _value);
|
|
|
|
if (o_ms)
|
|
{
|
|
o_ms->from = _senderAddress;
|
|
o_ms->to = _receiveAddress;
|
|
o_ms->value = _value;
|
|
o_ms->input = _data.toBytes();
|
|
}
|
|
|
|
if (addressHasCode(_codeAddress))
|
|
{
|
|
VM vm(*_gas);
|
|
ExtVM evm(*this, _receiveAddress, _senderAddress, _originAddress, _value, _gasPrice, _data, &code(_codeAddress), o_ms, _level);
|
|
bool revert = false;
|
|
|
|
try
|
|
{
|
|
auto out = vm.go(evm, _onOp);
|
|
memcpy(_out.data(), out.data(), std::min(out.size(), _out.size()));
|
|
if (o_suicides)
|
|
for (auto i: evm.suicides)
|
|
o_suicides->insert(i);
|
|
if (o_posts)
|
|
for (auto i: evm.posts)
|
|
o_posts->push_back(i);
|
|
if (o_ms)
|
|
o_ms->output = out.toBytes();
|
|
}
|
|
catch (OutOfGas const& /*_e*/)
|
|
{
|
|
clog(StateChat) << "Out of Gas! Reverting.";
|
|
revert = true;
|
|
}
|
|
catch (VMException const& _e)
|
|
{
|
|
clog(StateChat) << "VM Exception: " << _e.description();
|
|
}
|
|
catch (Exception const& _e)
|
|
{
|
|
clog(StateChat) << "Exception in VM: " << _e.description();
|
|
}
|
|
catch (std::exception const& _e)
|
|
{
|
|
clog(StateChat) << "std::exception in VM: " << _e.what();
|
|
}
|
|
|
|
// Write state out only in the case of a non-excepted transaction.
|
|
if (revert)
|
|
evm.revert();
|
|
|
|
*_gas = vm.gas();
|
|
|
|
return !revert;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
h160 State::create(Address _sender, u256 _endowment, u256 _gasPrice, u256* _gas, bytesConstRef _code, Address _origin, std::set<Address>* o_suicides, PostList* o_posts, Manifest* o_ms, OnOpFunc const& _onOp, unsigned _level)
|
|
{
|
|
if (!_origin)
|
|
_origin = _sender;
|
|
|
|
if (o_ms)
|
|
{
|
|
o_ms->from = _sender;
|
|
o_ms->to = Address();
|
|
o_ms->value = _endowment;
|
|
o_ms->input = _code.toBytes();
|
|
}
|
|
|
|
Address newAddress = right160(sha3(rlpList(_sender, transactionsFrom(_sender) - 1)));
|
|
while (addressInUse(newAddress))
|
|
newAddress = (u160)newAddress + 1;
|
|
|
|
// Set up new account...
|
|
m_cache[newAddress] = AddressState(0, _endowment, h256(), h256());
|
|
|
|
// Execute init code.
|
|
VM vm(*_gas);
|
|
ExtVM evm(*this, newAddress, _sender, _origin, _endowment, _gasPrice, bytesConstRef(), _code, o_ms, _level);
|
|
bool revert = false;
|
|
bytesConstRef out;
|
|
|
|
try
|
|
{
|
|
out = vm.go(evm, _onOp);
|
|
if (o_ms)
|
|
o_ms->output = out.toBytes();
|
|
if (o_suicides)
|
|
for (auto i: evm.suicides)
|
|
o_suicides->insert(i);
|
|
if (o_posts)
|
|
for (auto i: evm.posts)
|
|
o_posts->push_back(i);
|
|
}
|
|
catch (OutOfGas const& /*_e*/)
|
|
{
|
|
clog(StateChat) << "Out of Gas! Reverting.";
|
|
revert = true;
|
|
}
|
|
catch (VMException const& _e)
|
|
{
|
|
clog(StateChat) << "VM Exception: " << _e.description();
|
|
}
|
|
catch (Exception const& _e)
|
|
{
|
|
clog(StateChat) << "Exception in VM: " << _e.description();
|
|
}
|
|
catch (std::exception const& _e)
|
|
{
|
|
clog(StateChat) << "std::exception in VM: " << _e.what();
|
|
}
|
|
|
|
// TODO: CHECK: IS THIS CORRECT?! (esp. given account created prior to revertion init.)
|
|
|
|
// Write state out only in the case of a non-out-of-gas transaction.
|
|
if (revert)
|
|
evm.revert();
|
|
|
|
// Set code.
|
|
if (addressInUse(newAddress))
|
|
m_cache[newAddress].setCode(out);
|
|
|
|
*_gas = vm.gas();
|
|
|
|
return newAddress;
|
|
}
|
|
|
|
State State::fromPending(unsigned _i) const
|
|
{
|
|
State ret = *this;
|
|
ret.m_cache.clear();
|
|
_i = min<unsigned>(_i, m_transactions.size());
|
|
if (!_i)
|
|
ret.m_state.setRoot(m_previousBlock.stateRoot);
|
|
else
|
|
ret.m_state.setRoot(m_transactions[_i - 1].stateRoot);
|
|
while (ret.m_transactions.size() > _i)
|
|
{
|
|
ret.m_transactionSet.erase(ret.m_transactions.back().transaction.sha3());
|
|
ret.m_transactions.pop_back();
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
void State::applyRewards(Addresses const& _uncleAddresses)
|
|
{
|
|
u256 r = m_blockReward;
|
|
for (auto const& i: _uncleAddresses)
|
|
{
|
|
addBalance(i, m_blockReward * 15 / 16);
|
|
r += m_blockReward / 32;
|
|
}
|
|
addBalance(m_currentBlock.coinbaseAddress, r);
|
|
}
|
|
|
|
std::ostream& dev::eth::operator<<(std::ostream& _out, State const& _s)
|
|
{
|
|
_out << "--- " << _s.rootHash() << std::endl;
|
|
std::set<Address> d;
|
|
std::set<Address> dtr;
|
|
auto trie = TrieDB<Address, OverlayDB>(const_cast<OverlayDB*>(&_s.m_db), _s.rootHash());
|
|
for (auto i: trie)
|
|
d.insert(i.first), dtr.insert(i.first);
|
|
for (auto i: _s.m_cache)
|
|
d.insert(i.first);
|
|
|
|
for (auto i: d)
|
|
{
|
|
auto it = _s.m_cache.find(i);
|
|
AddressState* cache = it != _s.m_cache.end() ? &it->second : nullptr;
|
|
auto rlpString = trie.at(i);
|
|
RLP r(dtr.count(i) ? rlpString : "");
|
|
assert(cache || r);
|
|
|
|
if (cache && !cache->isAlive())
|
|
_out << "XXX " << i << std::endl;
|
|
else
|
|
{
|
|
string lead = (cache ? r ? " * " : " + " : " ");
|
|
if (cache && r && cache->nonce() == r[0].toInt<u256>() && cache->balance() == r[1].toInt<u256>())
|
|
lead = " . ";
|
|
|
|
stringstream contout;
|
|
|
|
if ((!cache || cache->codeBearing()) && (!r || r[3].toHash<h256>() != EmptySHA3))
|
|
{
|
|
std::map<u256, u256> mem;
|
|
std::set<u256> back;
|
|
std::set<u256> delta;
|
|
std::set<u256> cached;
|
|
if (r)
|
|
{
|
|
TrieDB<h256, OverlayDB> memdb(const_cast<OverlayDB*>(&_s.m_db), r[2].toHash<h256>()); // promise we won't alter the overlay! :)
|
|
for (auto const& j: memdb)
|
|
mem[j.first] = RLP(j.second).toInt<u256>(), back.insert(j.first);
|
|
}
|
|
if (cache)
|
|
for (auto const& j: cache->storage())
|
|
{
|
|
if ((!mem.count(j.first) && j.second) || (mem.count(j.first) && mem.at(j.first) != j.second))
|
|
mem[j.first] = j.second, delta.insert(j.first);
|
|
else if (j.second)
|
|
cached.insert(j.first);
|
|
}
|
|
if (delta.size())
|
|
lead = (lead == " . ") ? "*.* " : "*** ";
|
|
|
|
contout << " @:";
|
|
if (delta.size())
|
|
contout << "???";
|
|
else
|
|
contout << r[2].toHash<h256>();
|
|
if (cache && cache->isFreshCode())
|
|
contout << " $" << cache->code();
|
|
else
|
|
contout << " $" << (cache ? cache->codeHash() : r[3].toHash<h256>());
|
|
|
|
for (auto const& j: mem)
|
|
if (j.second)
|
|
contout << std::endl << (delta.count(j.first) ? back.count(j.first) ? " * " : " + " : cached.count(j.first) ? " . " : " ") << std::hex << nouppercase << std::setw(64) << j.first << ": " << std::setw(0) << j.second ;
|
|
else
|
|
contout << std::endl << "XXX " << std::hex << nouppercase << std::setw(64) << j.first << "";
|
|
}
|
|
else
|
|
contout << " [SIMPLE]";
|
|
_out << lead << i << ": " << std::dec << (cache ? cache->nonce() : r[0].toInt<u256>()) << " #:" << (cache ? cache->balance() : r[1].toInt<u256>()) << contout.str() << std::endl;
|
|
}
|
|
}
|
|
return _out;
|
|
}
|
|
|