You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

825 lines
20 KiB

/*
This file is part of cpp-ethereum.
cpp-ethereum is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
cpp-ethereum is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with cpp-ethereum. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file Client.cpp
* @author Gav Wood <i@gavwood.com>
* @date 2014
*/
#include "Client.h"
#include <chrono>
#include <thread>
#include <boost/filesystem.hpp>
#include <libethential/Log.h>
#include "Defaults.h"
#include "PeerServer.h"
using namespace std;
using namespace eth;
void MessageFilter::fillStream(RLPStream& _s) const
{
_s.appendList(8) << m_from << m_to << m_stateAltered << m_altered << m_earliest << m_latest << m_max << m_skip;
}
h256 MessageFilter::sha3() const
{
RLPStream s;
fillStream(s);
return eth::sha3(s.out());
}
VersionChecker::VersionChecker(string const& _dbPath):
m_path(_dbPath.size() ? _dbPath : Defaults::dbPath())
{
m_ok = RLP(contents(m_path + "/protocol")).toInt<unsigned>(RLP::LaisezFaire) == c_protocolVersion && RLP(contents(m_path + "/database")).toInt<unsigned>(RLP::LaisezFaire) == c_databaseVersion;
}
void VersionChecker::setOk()
{
if (!m_ok)
{
try
{
boost::filesystem::create_directory(m_path);
}
catch (...) {}
writeFile(m_path + "/protocol", rlp(c_protocolVersion));
writeFile(m_path + "/database", rlp(c_databaseVersion));
}
}
Client::Client(std::string const& _clientVersion, Address _us, std::string const& _dbPath, bool _forceClean):
m_clientVersion(_clientVersion),
m_vc(_dbPath),
m_bc(_dbPath, !m_vc.ok() || _forceClean),
m_stateDB(State::openDB(_dbPath, !m_vc.ok() || _forceClean)),
m_preMine(_us, m_stateDB),
m_postMine(_us, m_stateDB),
m_workState(Deleted)
{
if (_dbPath.size())
Defaults::setDBPath(_dbPath);
m_vc.setOk();
work(true);
}
void Client::ensureWorking()
{
static const char* c_threadName = "eth";
if (!m_work)
m_work.reset(new thread([&]()
{
setThreadName(c_threadName);
m_workState.store(Active, std::memory_order_release);
while (m_workState.load(std::memory_order_acquire) != Deleting)
work();
m_workState.store(Deleted, std::memory_order_release);
// Synchronise the state according to the head of the block chain.
// TODO: currently it contains keys for *all* blocks. Make it remove old ones.
WriteGuard l(x_stateDB);
m_preMine.sync(m_bc);
m_postMine = m_preMine;
}));
}
Client::~Client()
{
if (m_work)
{
if (m_workState.load(std::memory_order_acquire) == Active)
m_workState.store(Deleting, std::memory_order_release);
while (m_workState.load(std::memory_order_acquire) != Deleted)
this_thread::sleep_for(chrono::milliseconds(10));
m_work->join();
m_work.reset(nullptr);
}
stopNetwork();
}
void Client::flushTransactions()
{
work(true);
}
void Client::clearPending()
{
WriteGuard l(x_stateDB);
if (!m_postMine.pending().size())
return;
h256Set changeds;
for (unsigned i = 0; i < m_postMine.pending().size(); ++i)
appendFromNewPending(m_postMine.bloom(i), changeds);
changeds.insert(PendingChangedFilter);
m_postMine = m_preMine;
noteChanged(changeds);
}
unsigned Client::installWatch(h256 _h)
{
auto ret = m_watches.size() ? m_watches.rbegin()->first + 1 : 0;
m_watches[ret] = ClientWatch(_h);
cwatch << "+++" << ret << _h;
return ret;
}
unsigned Client::installWatch(MessageFilter const& _f)
{
lock_guard<mutex> l(m_filterLock);
h256 h = _f.sha3();
if (!m_filters.count(h))
m_filters.insert(make_pair(h, _f));
return installWatch(h);
}
void Client::uninstallWatch(unsigned _i)
{
cwatch << "XXX" << _i;
lock_guard<mutex> l(m_filterLock);
auto it = m_watches.find(_i);
if (it == m_watches.end())
return;
auto id = it->second.id;
m_watches.erase(it);
auto fit = m_filters.find(id);
if (fit != m_filters.end())
if (!--fit->second.refCount)
m_filters.erase(fit);
}
void Client::appendFromNewPending(h256 _bloom, h256Set& o_changed) const
{
lock_guard<mutex> l(m_filterLock);
for (pair<h256, InstalledFilter> const& i: m_filters)
if ((unsigned)i.second.filter.latest() > m_bc.number() && i.second.filter.matches(_bloom))
o_changed.insert(i.first);
}
void Client::appendFromNewBlock(h256 _block, h256Set& o_changed) const
{
auto d = m_bc.details(_block);
lock_guard<mutex> l(m_filterLock);
for (pair<h256, InstalledFilter> const& i: m_filters)
if ((unsigned)i.second.filter.latest() >= d.number && (unsigned)i.second.filter.earliest() <= d.number && i.second.filter.matches(d.bloom))
o_changed.insert(i.first);
}
void Client::noteChanged(h256Set const& _filters)
{
lock_guard<mutex> l(m_filterLock);
for (auto& i: m_watches)
if (_filters.count(i.second.id))
{
cwatch << "!!!" << i.first << i.second.id;
i.second.changes++;
}
}
void Client::startNetwork(unsigned short _listenPort, std::string const& _seedHost, unsigned short _port, NodeMode _mode, unsigned _peers, string const& _publicIP, bool _upnp, u256 _networkId)
{
static const char* c_threadName = "net";
{
UpgradableGuard l(x_net);
if (m_net.get())
return;
{
UpgradeGuard ul(l);
if (!m_workNet)
m_workNet.reset(new thread([&]()
{
setThreadName(c_threadName);
m_workNetState.store(Active, std::memory_order_release);
while (m_workNetState.load(std::memory_order_acquire) != Deleting)
workNet();
m_workNetState.store(Deleted, std::memory_order_release);
}));
try
{
m_net.reset(new PeerServer(m_clientVersion, m_bc, _networkId, _listenPort, _mode, _publicIP, _upnp));
}
catch (std::exception const&)
{
// Probably already have the port open.
cwarn << "Could not initialize with specified/default port. Trying system-assigned port";
m_net.reset(new PeerServer(m_clientVersion, m_bc, 0, _mode, _publicIP, _upnp));
}
}
m_net->setIdealPeerCount(_peers);
}
if (_seedHost.size())
connect(_seedHost, _port);
ensureWorking();
}
void Client::stopNetwork()
{
UpgradableGuard l(x_net);
if (m_workNet)
{
if (m_workNetState.load(std::memory_order_acquire) == Active)
m_workNetState.store(Deleting, std::memory_order_release);
while (m_workNetState.load(std::memory_order_acquire) != Deleted)
this_thread::sleep_for(chrono::milliseconds(10));
m_workNet->join();
}
if (m_net)
{
UpgradeGuard ul(l);
m_net.reset(nullptr);
m_workNet.reset(nullptr);
}
}
std::vector<PeerInfo> Client::peers()
{
ReadGuard l(x_net);
return m_net ? m_net->peers() : std::vector<PeerInfo>();
}
size_t Client::peerCount() const
{
ReadGuard l(x_net);
return m_net ? m_net->peerCount() : 0;
}
void Client::setIdealPeerCount(size_t _n) const
{
ReadGuard l(x_net);
if (m_net)
return m_net->setIdealPeerCount(_n);
}
bytes Client::savePeers()
{
ReadGuard l(x_net);
if (m_net)
return m_net->savePeers();
return bytes();
}
void Client::restorePeers(bytesConstRef _saved)
{
ReadGuard l(x_net);
if (m_net)
return m_net->restorePeers(_saved);
}
void Client::connect(std::string const& _seedHost, unsigned short _port)
{
ReadGuard l(x_net);
if (!m_net.get())
return;
m_net->connect(_seedHost, _port);
}
void Client::startMining()
{
ensureWorking();
m_doMine = true;
m_restartMining = true;
}
void Client::stopMining()
{
m_doMine = false;
}
void Client::transact(Secret _secret, u256 _value, Address _dest, bytes const& _data, u256 _gas, u256 _gasPrice)
{
ensureWorking();
Transaction t;
// cdebug << "Nonce at " << toAddress(_secret) << " pre:" << m_preMine.transactionsFrom(toAddress(_secret)) << " post:" << m_postMine.transactionsFrom(toAddress(_secret));
{
ReadGuard l(x_stateDB);
t.nonce = m_postMine.transactionsFrom(toAddress(_secret));
}
t.value = _value;
t.gasPrice = _gasPrice;
t.gas = _gas;
t.receiveAddress = _dest;
t.data = _data;
t.sign(_secret);
cnote << "New transaction " << t;
m_tq.attemptImport(t.rlp());
}
bytes Client::call(Secret _secret, u256 _value, Address _dest, bytes const& _data, u256 _gas, u256 _gasPrice)
{
State temp;
Transaction t;
// cdebug << "Nonce at " << toAddress(_secret) << " pre:" << m_preMine.transactionsFrom(toAddress(_secret)) << " post:" << m_postMine.transactionsFrom(toAddress(_secret));
{
ReadGuard l(x_stateDB);
temp = m_postMine;
t.nonce = temp.transactionsFrom(toAddress(_secret));
}
t.value = _value;
t.gasPrice = _gasPrice;
t.gas = _gas;
t.receiveAddress = _dest;
t.data = _data;
t.sign(_secret);
bytes out;
u256 gasUsed = temp.execute(t.data, &out, false);
(void)gasUsed; // TODO: do something with gasused which it returns.
return out;
}
Address Client::transact(Secret _secret, u256 _endowment, bytes const& _init, u256 _gas, u256 _gasPrice)
{
ensureWorking();
Transaction t;
{
ReadGuard l(x_stateDB);
t.nonce = m_postMine.transactionsFrom(toAddress(_secret));
}
t.value = _endowment;
t.gasPrice = _gasPrice;
t.gas = _gas;
t.receiveAddress = Address();
t.data = _init;
t.sign(_secret);
cnote << "New transaction " << t;
m_tq.attemptImport(t.rlp());
return right160(sha3(rlpList(t.sender(), t.nonce)));
}
void Client::inject(bytesConstRef _rlp)
{
ensureWorking();
m_tq.attemptImport(_rlp);
}
void Client::workNet()
{
// Process network events.
// Synchronise block chain with network.
// Will broadcast any of our (new) transactions and blocks, and collect & add any of their (new) transactions and blocks.
{
ReadGuard l(x_net);
if (m_net)
{
cwork << "NETWORK";
m_net->process(); // must be in guard for now since it uses the blockchain.
// returns h256Set as block hashes, once for each block that has come in/gone out.
cwork << "NET <==> TQ ; CHAIN ==> NET ==> BQ";
m_net->sync(m_tq, m_bq);
cwork << "TQ:" << m_tq.items() << "; BQ:" << m_bq.items();
}
}
this_thread::sleep_for(chrono::milliseconds(1));
}
void Client::work(bool _justQueue)
{
cworkin << "WORK";
h256Set changeds;
// Do some mining.
if (!_justQueue && (m_pendingCount || m_forceMining))
{
// TODO: Separate "Miner" object.
if (m_doMine)
{
if (m_restartMining)
{
m_mineProgress.best = (double)-1;
m_mineProgress.hashes = 0;
m_mineProgress.ms = 0;
WriteGuard l(x_stateDB);
if (m_paranoia)
{
if (m_postMine.amIJustParanoid(m_bc))
{
cnote << "I'm just paranoid. Block is fine.";
m_postMine.commitToMine(m_bc);
}
else
{
cwarn << "I'm not just paranoid. Cannot mine. Please file a bug report.";
m_doMine = false;
}
}
else
m_postMine.commitToMine(m_bc);
}
}
if (m_doMine)
{
cwork << "MINE";
m_restartMining = false;
// Mine for a while.
MineInfo mineInfo = m_postMine.mine(100);
m_mineProgress.best = min(m_mineProgress.best, mineInfo.best);
m_mineProgress.current = mineInfo.best;
m_mineProgress.requirement = mineInfo.requirement;
m_mineProgress.ms += 100;
m_mineProgress.hashes += mineInfo.hashes;
WriteGuard l(x_stateDB);
m_mineHistory.push_back(mineInfo);
if (mineInfo.completed)
{
// Import block.
cwork << "COMPLETE MINE";
m_postMine.completeMine();
cwork << "CHAIN <== postSTATE";
h256s hs = m_bc.attemptImport(m_postMine.blockData(), m_stateDB);
if (hs.size())
{
for (auto h: hs)
appendFromNewBlock(h, changeds);
changeds.insert(ChainChangedFilter);
//changeds.insert(PendingChangedFilter); // if we mined the new block, then we've probably reset the pending transactions.
}
}
}
else
{
cwork << "SLEEP";
this_thread::sleep_for(chrono::milliseconds(100));
}
}
else
{
cwork << "SLEEP";
this_thread::sleep_for(chrono::milliseconds(100));
}
// Synchronise state to block chain.
// This should remove any transactions on our queue that are included within our state.
// It also guarantees that the state reflects the longest (valid!) chain on the block chain.
// This might mean reverting to an earlier state and replaying some blocks, or, (worst-case:
// if there are no checkpoints before our fork) reverting to the genesis block and replaying
// all blocks.
// Resynchronise state with block chain & trans
{
WriteGuard l(x_stateDB);
cwork << "BQ ==> CHAIN ==> STATE";
OverlayDB db = m_stateDB;
x_stateDB.unlock();
h256s newBlocks = m_bc.sync(m_bq, db, 100); // TODO: remove transactions from m_tq nicely rather than relying on out of date nonce later on.
if (newBlocks.size())
{
for (auto i: newBlocks)
appendFromNewBlock(i, changeds);
changeds.insert(ChainChangedFilter);
}
x_stateDB.lock();
if (newBlocks.size())
m_stateDB = db;
cwork << "preSTATE <== CHAIN";
if (m_preMine.sync(m_bc) || m_postMine.address() != m_preMine.address())
{
if (m_doMine)
cnote << "New block on chain: Restarting mining operation.";
m_restartMining = true; // need to re-commit to mine.
m_postMine = m_preMine;
changeds.insert(PendingChangedFilter);
}
// returns h256s as blooms, once for each transaction.
cwork << "postSTATE <== TQ";
h256s newPendingBlooms = m_postMine.sync(m_tq);
if (newPendingBlooms.size())
{
for (auto i: newPendingBlooms)
appendFromNewPending(i, changeds);
changeds.insert(PendingChangedFilter);
if (m_doMine)
cnote << "Additional transaction ready: Restarting mining operation.";
m_restartMining = true;
}
m_pendingCount = m_postMine.pending().size();
}
cwork << "noteChanged" << changeds.size() << "items";
noteChanged(changeds);
cworkout << "WORK";
}
unsigned Client::numberOf(int _n) const
{
if (_n > 0)
return _n;
else if (_n == GenesisBlock)
return 0;
else
return m_bc.details().number + max(-(int)m_bc.details().number, 1 + _n);
}
State Client::asOf(int _h) const
{
ReadGuard l(x_stateDB);
if (_h == 0)
return m_postMine;
else if (_h == -1)
return m_preMine;
else
return State(m_stateDB, m_bc, m_bc.numberHash(numberOf(_h)));
}
State Client::state(unsigned _txi, h256 _block) const
{
ReadGuard l(x_stateDB);
return State(m_stateDB, m_bc, _block).fromPending(_txi);
}
eth::State Client::state(h256 _block) const
{
ReadGuard l(x_stateDB);
return State(m_stateDB, m_bc, _block);
}
eth::State Client::state(unsigned _txi) const
{
ReadGuard l(x_stateDB);
return m_postMine.fromPending(_txi);
}
StateDiff Client::diff(unsigned _txi, int _block) const
{
State st = state(_block);
return st.fromPending(_txi).diff(st.fromPending(_txi + 1));
}
StateDiff Client::diff(unsigned _txi, h256 _block) const
{
State st = state(_block);
return st.fromPending(_txi).diff(st.fromPending(_txi + 1));
}
std::vector<Address> Client::addresses(int _block) const
{
vector<Address> ret;
for (auto const& i: asOf(_block).addresses())
ret.push_back(i.first);
return ret;
}
u256 Client::balanceAt(Address _a, int _block) const
{
return asOf(_block).balance(_a);
}
std::map<u256, u256> Client::storageAt(Address _a, int _block) const
{
return asOf(_block).storage(_a);
}
u256 Client::countAt(Address _a, int _block) const
{
return asOf(_block).transactionsFrom(_a);
}
u256 Client::stateAt(Address _a, u256 _l, int _block) const
{
return asOf(_block).storage(_a, _l);
}
bytes Client::codeAt(Address _a, int _block) const
{
return asOf(_block).code(_a);
}
bool MessageFilter::matches(h256 _bloom) const
{
auto have = [=](Address const& a) { return _bloom.contains(a.bloom()); };
if (m_from.size())
{
for (auto i: m_from)
if (have(i))
goto OK1;
return false;
}
OK1:
if (m_to.size())
{
for (auto i: m_to)
if (have(i))
goto OK2;
return false;
}
OK2:
if (m_stateAltered.size() || m_altered.size())
{
for (auto i: m_altered)
if (have(i))
goto OK3;
for (auto i: m_stateAltered)
if (have(i.first) && _bloom.contains(h256(i.second).bloom()))
goto OK3;
return false;
}
OK3:
return true;
}
bool MessageFilter::matches(State const& _s, unsigned _i) const
{
h256 b = _s.changesFromPending(_i).bloom();
if (!matches(b))
return false;
Transaction t = _s.pending()[_i];
if (!m_to.empty() && !m_to.count(t.receiveAddress))
return false;
if (!m_from.empty() && !m_from.count(t.sender()))
return false;
if (m_stateAltered.empty() && m_altered.empty())
return true;
StateDiff d = _s.pendingDiff(_i);
if (!m_altered.empty())
{
for (auto const& s: m_altered)
if (d.accounts.count(s))
return true;
return false;
}
if (!m_stateAltered.empty())
{
for (auto const& s: m_stateAltered)
if (d.accounts.count(s.first) && d.accounts.at(s.first).storage.count(s.second))
return true;
return false;
}
return true;
}
PastMessages MessageFilter::matches(Manifest const& _m, unsigned _i) const
{
PastMessages ret;
matches(_m, vector<unsigned>(1, _i), _m.from, PastMessages(), ret);
return ret;
}
bool MessageFilter::matches(Manifest const& _m, vector<unsigned> _p, Address _o, PastMessages _limbo, PastMessages& o_ret) const
{
bool ret;
if ((m_from.empty() || m_from.count(_m.from)) && (m_to.empty() || m_to.count(_m.to)))
_limbo.push_back(PastMessage(_m, _p, _o));
// Handle limbos, by checking against all addresses in alteration.
bool alters = m_altered.empty() && m_stateAltered.empty();
alters = alters || m_altered.count(_m.from) || m_altered.count(_m.to);
if (!alters)
for (auto const& i: _m.altered)
if (m_altered.count(_m.to) || m_stateAltered.count(make_pair(_m.to, i)))
{
alters = true;
break;
}
// If we do alter stuff,
if (alters)
{
o_ret += _limbo;
_limbo.clear();
ret = true;
}
_p.push_back(0);
for (auto const& m: _m.internal)
{
if (matches(m, _p, _o, _limbo, o_ret))
{
_limbo.clear();
ret = true;
}
_p.back()++;
}
return ret;
}
PastMessages Client::messages(MessageFilter const& _f) const
{
PastMessages ret;
unsigned begin = min<unsigned>(m_bc.number(), (unsigned)_f.latest());
unsigned end = min(begin, (unsigned)_f.earliest());
unsigned m = _f.max();
unsigned s = _f.skip();
// Handle pending transactions differently as they're not on the block chain.
if (begin == m_bc.number())
{
ReadGuard l(x_stateDB);
for (unsigned i = 0; i < m_postMine.pending().size(); ++i)
{
// Might have a transaction that contains a matching message.
Manifest const& ms = m_postMine.changesFromPending(i);
PastMessages pm = _f.matches(ms, i);
if (pm.size())
{
auto ts = time(0);
for (unsigned j = 0; j < pm.size() && ret.size() != m; ++j)
if (s)
s--;
else
// Have a transaction that contains a matching message.
ret.insert(ret.begin(), pm[j].polish(h256(), ts, m_bc.number() + 1, m_postMine.address()));
}
}
}
#if ETH_DEBUG
unsigned skipped = 0;
unsigned falsePos = 0;
#endif
auto h = m_bc.numberHash(begin);
unsigned n = begin;
for (; ret.size() != m && n != end; n--, h = m_bc.details(h).parent)
{
auto d = m_bc.details(h);
#if ETH_DEBUG
int total = 0;
#endif
if (_f.matches(d.bloom))
{
// Might have a block that contains a transaction that contains a matching message.
auto bs = m_bc.blooms(h).blooms;
Manifests ms;
BlockInfo bi;
for (unsigned i = 0; i < bs.size(); ++i)
if (_f.matches(bs[i]))
{
// Might have a transaction that contains a matching message.
if (ms.empty())
ms = m_bc.traces(h).traces;
Manifest const& changes = ms[i];
PastMessages pm = _f.matches(changes, i);
if (pm.size())
{
#if ETH_DEBUG
total += pm.size();
#endif
if (!bi)
bi.populate(m_bc.block(h));
auto ts = bi.timestamp;
auto cb = bi.coinbaseAddress;
for (unsigned j = 0; j < pm.size() && ret.size() != m; ++j)
if (s)
s--;
else
// Have a transaction that contains a matching message.
ret.push_back(pm[j].polish(h, ts, n, cb));
}
}
#if ETH_DEBUG
if (!total)
falsePos++;
}
else
skipped++;
#else
}
#endif
if (n == end)
break;
}
#if ETH_DEBUG
// cdebug << (begin - n) << "searched; " << skipped << "skipped; " << falsePos << "false +ves";
#endif
return ret;
}