You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

800 lines
22 KiB

#include "Compiler.h"
#include <functional>
#include <fstream>
#include <chrono>
#include <sstream>
#include "preprocessor/llvm_includes_start.h"
#include <llvm/IR/CFG.h>
#include <llvm/IR/Module.h>
#include <llvm/IR/IntrinsicInst.h>
#include "preprocessor/llvm_includes_end.h"
#include "Instruction.h"
#include "Type.h"
#include "Memory.h"
#include "Stack.h"
#include "Ext.h"
#include "GasMeter.h"
#include "Utils.h"
#include "Endianness.h"
#include "Arith256.h"
#include "RuntimeManager.h"
namespace dev
{
namespace eth
{
namespace jit
{
static const auto c_destIdxLabel = "destIdx";
Compiler::Compiler(Options const& _options):
m_options(_options),
m_builder(llvm::getGlobalContext())
{
Type::init(m_builder.getContext());
}
std::vector<BasicBlock> Compiler::createBasicBlocks(code_iterator _codeBegin, code_iterator _codeEnd, llvm::SwitchInst& _jumpTable)
{
/// Helper function that skips push data and finds next iterator (can be the end)
auto skipPushDataAndGetNext = [](code_iterator _curr, code_iterator _end)
{
static const auto push1 = static_cast<size_t>(Instruction::PUSH1);
static const auto push32 = static_cast<size_t>(Instruction::PUSH32);
size_t offset = 1;
if (*_curr >= push1 && *_curr <= push32)
offset += std::min<size_t>(*_curr - push1 + 1, (_end - _curr) - 1);
return _curr + offset;
};
// Skip all STOPs in the end
for (; _codeEnd != _codeBegin; --_codeEnd)
if (*(_codeEnd - 1) != static_cast<byte>(Instruction::STOP))
break;
std::vector<BasicBlock> blocks;
auto begin = _codeBegin; // begin of current block
for (auto curr = begin, next = begin; curr != _codeEnd; curr = next)
{
next = skipPushDataAndGetNext(curr, _codeEnd);
bool isEnd = false;
switch (Instruction(*curr))
{
case Instruction::JUMP:
case Instruction::JUMPI:
case Instruction::RETURN:
case Instruction::STOP:
case Instruction::SUICIDE:
isEnd = true;
break;
default:
break;
}
assert(next <= _codeEnd);
if (next == _codeEnd || Instruction(*next) == Instruction::JUMPDEST)
isEnd = true;
if (isEnd)
{
auto beginIdx = begin - _codeBegin;
blocks.emplace_back(beginIdx, begin, next, m_mainFunc);
if (Instruction(*begin) == Instruction::JUMPDEST)
_jumpTable.addCase(Constant::get(beginIdx), blocks.back().llvm());
begin = next;
}
}
return blocks;
}
void Compiler::resolveJumps()
{
// Iterate through all EVM instructions blocks (skip first 4 - special blocks).
for (auto it = std::next(m_mainFunc->begin(), 4); it != m_mainFunc->end(); ++it)
{
auto jumpTable = llvm::cast<llvm::SwitchInst>(m_jumpTableBB->getTerminator());
auto jumpTableInput = llvm::cast<llvm::PHINode>(m_jumpTableBB->begin());
auto nextBlock = it->getNextNode() != m_mainFunc->end() ? it->getNextNode() : m_stopBB;
auto term = it->getTerminator();
if (!term) // Block may have no terminator if the next instruction is a jump destination.
llvm::IRBuilder<>{it}.CreateBr(nextBlock);
else if (auto jump = llvm::dyn_cast<llvm::BranchInst>(term))
if (jump->getSuccessor(0) == m_jumpTableBB)
{
auto destIdx = llvm::cast<llvm::ValueAsMetadata>(jump->getMetadata(c_destIdxLabel)->getOperand(0))->getValue();
if (auto constant = llvm::dyn_cast<llvm::ConstantInt>(destIdx))
{
// If destination index is a constant do direct jump to the destination block.
auto bb = jumpTable->findCaseValue(constant).getCaseSuccessor();
jump->setSuccessor(0, bb);
}
else
jumpTableInput->addIncoming(destIdx, it); // Fill up PHI node
if (jump->isConditional())
jump->setSuccessor(1, nextBlock); // Set next block for conditional jumps
}
}
}
std::unique_ptr<llvm::Module> Compiler::compile(code_iterator _begin, code_iterator _end, std::string const& _id)
{
auto module = std::unique_ptr<llvm::Module>(new llvm::Module(_id, m_builder.getContext()));
// Create main function
auto mainFuncType = llvm::FunctionType::get(Type::MainReturn, Type::RuntimePtr, false);
m_mainFunc = llvm::Function::Create(mainFuncType, llvm::Function::ExternalLinkage, _id, module.get());
m_mainFunc->getArgumentList().front().setName("rt");
// Create entry basic block
auto entryBlock = llvm::BasicBlock::Create(m_builder.getContext(), {}, m_mainFunc);
m_stopBB = llvm::BasicBlock::Create(m_mainFunc->getContext(), "Stop", m_mainFunc);
m_abortBB = llvm::BasicBlock::Create(m_mainFunc->getContext(), "Abort", m_mainFunc);
m_jumpTableBB = llvm::BasicBlock::Create(m_mainFunc->getContext(), "JumpTable", m_mainFunc);
m_builder.SetInsertPoint(m_jumpTableBB);
auto target = m_builder.CreatePHI(Type::Word, 16, "target");
auto& jumpTable = *m_builder.CreateSwitch(target, m_abortBB);
m_builder.SetInsertPoint(entryBlock);
auto blocks = createBasicBlocks(_begin, _end, jumpTable);
// Init runtime structures.
RuntimeManager runtimeManager(m_builder, _begin, _end);
GasMeter gasMeter(m_builder, runtimeManager);
Memory memory(runtimeManager, gasMeter);
Ext ext(runtimeManager, memory);
Stack stack(m_builder);
runtimeManager.setStack(stack); // Runtime Manager will free stack memory
Arith256 arith(m_builder);
auto jmpBufWords = m_builder.CreateAlloca(Type::BytePtr, m_builder.getInt64(3), "jmpBuf.words");
auto frameaddress = llvm::Intrinsic::getDeclaration(module.get(), llvm::Intrinsic::frameaddress);
auto fp = m_builder.CreateCall(frameaddress, m_builder.getInt32(0), "fp");
m_builder.CreateStore(fp, jmpBufWords);
auto stacksave = llvm::Intrinsic::getDeclaration(module.get(), llvm::Intrinsic::stacksave);
auto sp = m_builder.CreateCall(stacksave, {}, "sp");
auto jmpBufSp = m_builder.CreateConstInBoundsGEP1_64(jmpBufWords, 2, "jmpBuf.sp");
m_builder.CreateStore(sp, jmpBufSp);
auto setjmp = llvm::Intrinsic::getDeclaration(module.get(), llvm::Intrinsic::eh_sjlj_setjmp);
auto jmpBuf = m_builder.CreateBitCast(jmpBufWords, Type::BytePtr, "jmpBuf");
auto r = m_builder.CreateCall(setjmp, jmpBuf);
auto normalFlow = m_builder.CreateICmpEQ(r, m_builder.getInt32(0));
runtimeManager.setJmpBuf(jmpBuf);
auto firstBB = blocks.empty() ? m_stopBB : blocks.front().llvm();
m_builder.CreateCondBr(normalFlow, firstBB, m_abortBB, Type::expectTrue);
for (auto& block: blocks)
compileBasicBlock(block, runtimeManager, arith, memory, ext, gasMeter, stack);
// Code for special blocks:
m_builder.SetInsertPoint(m_stopBB);
runtimeManager.exit(ReturnCode::Stop);
m_builder.SetInsertPoint(m_abortBB);
runtimeManager.exit(ReturnCode::OutOfGas);
resolveJumps();
return module;
}
void Compiler::compileBasicBlock(BasicBlock& _basicBlock, RuntimeManager& _runtimeManager,
Arith256& _arith, Memory& _memory, Ext& _ext, GasMeter& _gasMeter, Stack& _globalStack)
{
m_builder.SetInsertPoint(_basicBlock.llvm());
LocalStack stack{_globalStack};
for (auto it = _basicBlock.begin(); it != _basicBlock.end(); ++it)
{
auto inst = Instruction(*it);
_gasMeter.count(inst);
switch (inst)
{
case Instruction::ADD:
{
auto lhs = stack.pop();
auto rhs = stack.pop();
auto result = m_builder.CreateAdd(lhs, rhs);
stack.push(result);
break;
}
case Instruction::SUB:
{
auto lhs = stack.pop();
auto rhs = stack.pop();
auto result = m_builder.CreateSub(lhs, rhs);
stack.push(result);
break;
}
case Instruction::MUL:
{
auto lhs = stack.pop();
auto rhs = stack.pop();
auto res = m_builder.CreateMul(lhs, rhs);
stack.push(res);
break;
}
case Instruction::DIV:
{
auto d = stack.pop();
auto n = stack.pop();
auto divByZero = m_builder.CreateICmpEQ(n, Constant::get(0));
n = m_builder.CreateSelect(divByZero, Constant::get(1), n); // protect against hardware signal
auto r = m_builder.CreateUDiv(d, n);
r = m_builder.CreateSelect(divByZero, Constant::get(0), r);
stack.push(r);
break;
}
case Instruction::SDIV:
{
auto d = stack.pop();
auto n = stack.pop();
auto divByZero = m_builder.CreateICmpEQ(n, Constant::get(0));
auto divByMinusOne = m_builder.CreateICmpEQ(n, Constant::get(-1));
n = m_builder.CreateSelect(divByZero, Constant::get(1), n); // protect against hardware signal
auto r = m_builder.CreateSDiv(d, n);
r = m_builder.CreateSelect(divByZero, Constant::get(0), r);
auto dNeg = m_builder.CreateSub(Constant::get(0), d);
r = m_builder.CreateSelect(divByMinusOne, dNeg, r); // protect against undef i256.min / -1
stack.push(r);
break;
}
case Instruction::MOD:
{
auto d = stack.pop();
auto n = stack.pop();
auto divByZero = m_builder.CreateICmpEQ(n, Constant::get(0));
n = m_builder.CreateSelect(divByZero, Constant::get(1), n); // protect against hardware signal
auto r = m_builder.CreateURem(d, n);
r = m_builder.CreateSelect(divByZero, Constant::get(0), r);
stack.push(r);
break;
}
case Instruction::SMOD:
{
auto d = stack.pop();
auto n = stack.pop();
auto divByZero = m_builder.CreateICmpEQ(n, Constant::get(0));
auto divByMinusOne = m_builder.CreateICmpEQ(n, Constant::get(-1));
n = m_builder.CreateSelect(divByZero, Constant::get(1), n); // protect against hardware signal
auto r = m_builder.CreateSRem(d, n);
r = m_builder.CreateSelect(divByZero, Constant::get(0), r);
r = m_builder.CreateSelect(divByMinusOne, Constant::get(0), r); // protect against undef i256.min / -1
stack.push(r);
break;
}
case Instruction::ADDMOD:
{
auto i512Ty = m_builder.getIntNTy(512);
auto a = stack.pop();
auto b = stack.pop();
auto m = stack.pop();
auto divByZero = m_builder.CreateICmpEQ(m, Constant::get(0));
a = m_builder.CreateZExt(a, i512Ty);
b = m_builder.CreateZExt(b, i512Ty);
m = m_builder.CreateZExt(m, i512Ty);
auto s = m_builder.CreateNUWAdd(a, b);
s = m_builder.CreateURem(s, m);
s = m_builder.CreateTrunc(s, Type::Word);
s = m_builder.CreateSelect(divByZero, Constant::get(0), s);
stack.push(s);
break;
}
case Instruction::MULMOD:
{
auto i512Ty = m_builder.getIntNTy(512);
auto a = stack.pop();
auto b = stack.pop();
auto m = stack.pop();
auto divByZero = m_builder.CreateICmpEQ(m, Constant::get(0));
m = m_builder.CreateZExt(m, i512Ty);
// TODO: Add support for i256 x i256 -> i512 in LowerEVM pass
llvm::Value* p = m_builder.CreateCall(Arith256::getMul512Func(*_basicBlock.llvm()->getParent()->getParent()), {a, b});
p = m_builder.CreateURem(p, m);
p = m_builder.CreateTrunc(p, Type::Word);
p = m_builder.CreateSelect(divByZero, Constant::get(0), p);
stack.push(p);
break;
}
case Instruction::EXP:
{
auto base = stack.pop();
auto exponent = stack.pop();
_gasMeter.countExp(exponent);
auto ret = _arith.exp(base, exponent);
stack.push(ret);
break;
}
case Instruction::NOT:
{
auto value = stack.pop();
auto ret = m_builder.CreateXor(value, Constant::get(-1), "bnot");
stack.push(ret);
break;
}
case Instruction::LT:
{
auto lhs = stack.pop();
auto rhs = stack.pop();
auto res1 = m_builder.CreateICmpULT(lhs, rhs);
auto res256 = m_builder.CreateZExt(res1, Type::Word);
stack.push(res256);
break;
}
case Instruction::GT:
{
auto lhs = stack.pop();
auto rhs = stack.pop();
auto res1 = m_builder.CreateICmpUGT(lhs, rhs);
auto res256 = m_builder.CreateZExt(res1, Type::Word);
stack.push(res256);
break;
}
case Instruction::SLT:
{
auto lhs = stack.pop();
auto rhs = stack.pop();
auto res1 = m_builder.CreateICmpSLT(lhs, rhs);
auto res256 = m_builder.CreateZExt(res1, Type::Word);
stack.push(res256);
break;
}
case Instruction::SGT:
{
auto lhs = stack.pop();
auto rhs = stack.pop();
auto res1 = m_builder.CreateICmpSGT(lhs, rhs);
auto res256 = m_builder.CreateZExt(res1, Type::Word);
stack.push(res256);
break;
}
case Instruction::EQ:
{
auto lhs = stack.pop();
auto rhs = stack.pop();
auto res1 = m_builder.CreateICmpEQ(lhs, rhs);
auto res256 = m_builder.CreateZExt(res1, Type::Word);
stack.push(res256);
break;
}
case Instruction::ISZERO:
{
auto top = stack.pop();
auto iszero = m_builder.CreateICmpEQ(top, Constant::get(0), "iszero");
auto result = m_builder.CreateZExt(iszero, Type::Word);
stack.push(result);
break;
}
case Instruction::AND:
{
auto lhs = stack.pop();
auto rhs = stack.pop();
auto res = m_builder.CreateAnd(lhs, rhs);
stack.push(res);
break;
}
case Instruction::OR:
{
auto lhs = stack.pop();
auto rhs = stack.pop();
auto res = m_builder.CreateOr(lhs, rhs);
stack.push(res);
break;
}
case Instruction::XOR:
{
auto lhs = stack.pop();
auto rhs = stack.pop();
auto res = m_builder.CreateXor(lhs, rhs);
stack.push(res);
break;
}
case Instruction::BYTE:
{
const auto idx = stack.pop();
auto value = Endianness::toBE(m_builder, stack.pop());
auto idxValid = m_builder.CreateICmpULT(idx, Constant::get(32), "idxValid");
auto bytes = m_builder.CreateBitCast(value, llvm::VectorType::get(Type::Byte, 32), "bytes");
// TODO: Workaround for LLVM bug. Using big value of index causes invalid memory access.
auto safeIdx = m_builder.CreateTrunc(idx, m_builder.getIntNTy(5));
// TODO: Workaround for LLVM bug. DAG Builder used sext on index instead of zext
safeIdx = m_builder.CreateZExt(safeIdx, Type::Size);
auto byte = m_builder.CreateExtractElement(bytes, safeIdx, "byte");
value = m_builder.CreateZExt(byte, Type::Word);
value = m_builder.CreateSelect(idxValid, value, Constant::get(0));
stack.push(value);
break;
}
case Instruction::SIGNEXTEND:
{
auto idx = stack.pop();
auto word = stack.pop();
auto k32_ = m_builder.CreateTrunc(idx, m_builder.getIntNTy(5), "k_32");
auto k32 = m_builder.CreateZExt(k32_, Type::Size);
auto k32x8 = m_builder.CreateMul(k32, m_builder.getInt64(8), "kx8");
// test for word >> (k * 8 + 7)
auto bitpos = m_builder.CreateAdd(k32x8, m_builder.getInt64(7), "bitpos");
auto bitposEx = m_builder.CreateZExt(bitpos, Type::Word);
auto bitval = m_builder.CreateLShr(word, bitposEx, "bitval");
auto bittest = m_builder.CreateTrunc(bitval, Type::Bool, "bittest");
auto mask_ = m_builder.CreateShl(Constant::get(1), bitposEx);
auto mask = m_builder.CreateSub(mask_, Constant::get(1), "mask");
auto negmask = m_builder.CreateXor(mask, llvm::ConstantInt::getAllOnesValue(Type::Word), "negmask");
auto val1 = m_builder.CreateOr(word, negmask);
auto val0 = m_builder.CreateAnd(word, mask);
auto kInRange = m_builder.CreateICmpULE(idx, llvm::ConstantInt::get(Type::Word, 30));
auto result = m_builder.CreateSelect(kInRange,
m_builder.CreateSelect(bittest, val1, val0),
word);
stack.push(result);
break;
}
case Instruction::SHA3:
{
auto inOff = stack.pop();
auto inSize = stack.pop();
_memory.require(inOff, inSize);
_gasMeter.countSha3Data(inSize);
auto hash = _ext.sha3(inOff, inSize);
stack.push(hash);
break;
}
case Instruction::POP:
{
stack.pop();
break;
}
case Instruction::ANY_PUSH:
{
auto value = readPushData(it, _basicBlock.end());
stack.push(Constant::get(value));
break;
}
case Instruction::ANY_DUP:
{
auto index = static_cast<size_t>(inst) - static_cast<size_t>(Instruction::DUP1);
stack.dup(index);
break;
}
case Instruction::ANY_SWAP:
{
auto index = static_cast<size_t>(inst) - static_cast<size_t>(Instruction::SWAP1) + 1;
stack.swap(index);
break;
}
case Instruction::MLOAD:
{
auto addr = stack.pop();
auto word = _memory.loadWord(addr);
stack.push(word);
break;
}
case Instruction::MSTORE:
{
auto addr = stack.pop();
auto word = stack.pop();
_memory.storeWord(addr, word);
break;
}
case Instruction::MSTORE8:
{
auto addr = stack.pop();
auto word = stack.pop();
_memory.storeByte(addr, word);
break;
}
case Instruction::MSIZE:
{
auto word = _memory.getSize();
stack.push(word);
break;
}
case Instruction::SLOAD:
{
auto index = stack.pop();
auto value = _ext.sload(index);
stack.push(value);
break;
}
case Instruction::SSTORE:
{
auto index = stack.pop();
auto value = stack.pop();
_gasMeter.countSStore(_ext, index, value);
_ext.sstore(index, value);
break;
}
case Instruction::JUMP:
case Instruction::JUMPI:
{
auto destIdx = llvm::MDNode::get(m_builder.getContext(), llvm::ValueAsMetadata::get(stack.pop()));
// Create branch instruction, initially to jump table.
// Destination will be optimized with direct jump during jump resolving if destination index is a constant.
auto jumpInst = (inst == Instruction::JUMP) ?
m_builder.CreateBr(m_jumpTableBB) :
m_builder.CreateCondBr(m_builder.CreateICmpNE(stack.pop(), Constant::get(0), "jump.check"), m_jumpTableBB, nullptr);
// Attach medatada to branch instruction with information about destination index.
jumpInst->setMetadata(c_destIdxLabel, destIdx);
break;
}
case Instruction::JUMPDEST:
{
// Nothing to do
break;
}
case Instruction::PC:
{
auto value = Constant::get(it - _basicBlock.begin() + _basicBlock.firstInstrIdx());
stack.push(value);
break;
}
case Instruction::GAS:
{
_gasMeter.commitCostBlock();
stack.push(m_builder.CreateZExt(_runtimeManager.getGas(), Type::Word));
break;
}
case Instruction::ADDRESS:
case Instruction::CALLER:
case Instruction::ORIGIN:
case Instruction::CALLVALUE:
case Instruction::GASPRICE:
case Instruction::COINBASE:
case Instruction::DIFFICULTY:
case Instruction::GASLIMIT:
case Instruction::NUMBER:
case Instruction::TIMESTAMP:
{
// Pushes an element of runtime data on stack
auto value = _runtimeManager.get(inst);
value = m_builder.CreateZExt(value, Type::Word);
stack.push(value);
break;
}
case Instruction::CODESIZE:
stack.push(_runtimeManager.getCodeSize());
break;
case Instruction::CALLDATASIZE:
stack.push(_runtimeManager.getCallDataSize());
break;
case Instruction::BLOCKHASH:
{
auto number = stack.pop();
auto hash = _ext.blockHash(number);
stack.push(hash);
break;
}
case Instruction::BALANCE:
{
auto address = stack.pop();
auto value = _ext.balance(address);
stack.push(value);
break;
}
case Instruction::EXTCODESIZE:
{
auto addr = stack.pop();
auto codeRef = _ext.extcode(addr);
stack.push(codeRef.size);
break;
}
case Instruction::CALLDATACOPY:
{
auto destMemIdx = stack.pop();
auto srcIdx = stack.pop();
auto reqBytes = stack.pop();
auto srcPtr = _runtimeManager.getCallData();
auto srcSize = _runtimeManager.getCallDataSize();
_memory.copyBytes(srcPtr, srcSize, srcIdx, destMemIdx, reqBytes);
break;
}
case Instruction::CODECOPY:
{
auto destMemIdx = stack.pop();
auto srcIdx = stack.pop();
auto reqBytes = stack.pop();
auto srcPtr = _runtimeManager.getCode(); // TODO: Code & its size are constants, feature #80814234
auto srcSize = _runtimeManager.getCodeSize();
_memory.copyBytes(srcPtr, srcSize, srcIdx, destMemIdx, reqBytes);
break;
}
case Instruction::EXTCODECOPY:
{
auto addr = stack.pop();
auto destMemIdx = stack.pop();
auto srcIdx = stack.pop();
auto reqBytes = stack.pop();
auto codeRef = _ext.extcode(addr);
_memory.copyBytes(codeRef.ptr, codeRef.size, srcIdx, destMemIdx, reqBytes);
break;
}
case Instruction::CALLDATALOAD:
{
auto idx = stack.pop();
auto value = _ext.calldataload(idx);
stack.push(value);
break;
}
case Instruction::CREATE:
{
auto endowment = stack.pop();
auto initOff = stack.pop();
auto initSize = stack.pop();
_memory.require(initOff, initSize);
_gasMeter.commitCostBlock();
auto address = _ext.create(endowment, initOff, initSize);
stack.push(address);
break;
}
case Instruction::CALL:
case Instruction::CALLCODE:
{
auto callGas = stack.pop();
auto codeAddress = stack.pop();
auto value = stack.pop();
auto inOff = stack.pop();
auto inSize = stack.pop();
auto outOff = stack.pop();
auto outSize = stack.pop();
_gasMeter.commitCostBlock();
// Require memory for in and out buffers
_memory.require(outOff, outSize); // Out buffer first as we guess it will be after the in one
_memory.require(inOff, inSize);
auto receiveAddress = codeAddress;
if (inst == Instruction::CALLCODE)
receiveAddress = _runtimeManager.get(RuntimeData::Address);
auto ret = _ext.call(callGas, receiveAddress, value, inOff, inSize, outOff, outSize, codeAddress);
_gasMeter.count(m_builder.getInt64(0), _runtimeManager.getJmpBuf(), _runtimeManager.getGasPtr());
stack.push(ret);
break;
}
case Instruction::RETURN:
{
auto index = stack.pop();
auto size = stack.pop();
_memory.require(index, size);
_runtimeManager.registerReturnData(index, size);
_runtimeManager.exit(ReturnCode::Return);
break;
}
case Instruction::SUICIDE:
{
_runtimeManager.registerSuicide(stack.pop());
_runtimeManager.exit(ReturnCode::Suicide);
break;
}
case Instruction::STOP:
{
m_builder.CreateBr(m_stopBB);
break;
}
case Instruction::LOG0:
case Instruction::LOG1:
case Instruction::LOG2:
case Instruction::LOG3:
case Instruction::LOG4:
{
auto beginIdx = stack.pop();
auto numBytes = stack.pop();
_memory.require(beginIdx, numBytes);
// This will commit the current cost block
_gasMeter.countLogData(numBytes);
std::array<llvm::Value*, 4> topics{{}};
auto numTopics = static_cast<size_t>(inst) - static_cast<size_t>(Instruction::LOG0);
for (size_t i = 0; i < numTopics; ++i)
topics[i] = stack.pop();
_ext.log(beginIdx, numBytes, topics);
break;
}
default: // Invalid instruction - abort
m_builder.CreateBr(m_abortBB);
it = _basicBlock.end() - 1; // finish block compilation
}
}
_gasMeter.commitCostBlock();
stack.finalize(m_builder, *_basicBlock.llvm()); // TODO: Use references
m_builder.SetInsertPoint(_basicBlock.llvm()->getFirstNonPHI()); // TODO: Move to LocalStack::finalize
_runtimeManager.checkStackLimit(stack.minSize(), stack.maxSize(), stack.size());
}
}
}
}