You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
354 lines
12 KiB
354 lines
12 KiB
/*
|
|
This file is part of cpp-ethereum.
|
|
|
|
cpp-ethereum is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Foobar is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with Foobar. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
/** @file Common.h
|
|
* @author Gav Wood <i@gavwood.com>
|
|
* @date 2014
|
|
*
|
|
* Shared algorithms and data types.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
// way to many uint to size_t warnings in 32 bit build
|
|
#ifdef _M_IX86
|
|
#pragma warning(disable:4244)
|
|
#endif
|
|
|
|
#include <array>
|
|
#include <map>
|
|
#include <set>
|
|
#include <string>
|
|
#include <cassert>
|
|
#include <sstream>
|
|
#include <cstdint>
|
|
#include <type_traits>
|
|
#include <boost/multiprecision/cpp_int.hpp>
|
|
#include "vector_ref.h"
|
|
|
|
namespace eth
|
|
{
|
|
|
|
// Binary data types.
|
|
using byte = uint8_t;
|
|
using bytes = std::vector<byte>;
|
|
using bytesRef = vector_ref<byte>;
|
|
using bytesConstRef = vector_ref<byte const>;
|
|
|
|
// Numeric types.
|
|
using bigint = boost::multiprecision::number<boost::multiprecision::cpp_int_backend<>>;
|
|
using u256 = boost::multiprecision::number<boost::multiprecision::cpp_int_backend<256, 256, boost::multiprecision::unsigned_magnitude, boost::multiprecision::unchecked, void>>;
|
|
using s256 = boost::multiprecision::number<boost::multiprecision::cpp_int_backend<256, 256, boost::multiprecision::signed_magnitude, boost::multiprecision::unchecked, void>>;
|
|
using u160 = boost::multiprecision::number<boost::multiprecision::cpp_int_backend<160, 160, boost::multiprecision::unsigned_magnitude, boost::multiprecision::unchecked, void>>;
|
|
using s160 = boost::multiprecision::number<boost::multiprecision::cpp_int_backend<160, 160, boost::multiprecision::signed_magnitude, boost::multiprecision::unchecked, void>>;
|
|
using uint = uint64_t;
|
|
using sint = int64_t;
|
|
using u256s = std::vector<u256>;
|
|
using u160s = std::vector<u160>;
|
|
using u256Set = std::set<u256>;
|
|
using u160Set = std::set<u160>;
|
|
|
|
extern const u256 c_genesisDifficulty;
|
|
|
|
template <class T, class Out> inline void toBigEndian(T _val, Out& o_out);
|
|
template <class T, class In> inline T fromBigEndian(In const& _bytes);
|
|
|
|
template <unsigned N>
|
|
class FixedHash
|
|
{
|
|
using Arith = boost::multiprecision::number<boost::multiprecision::cpp_int_backend<N * 8, N * 8, boost::multiprecision::unsigned_magnitude, boost::multiprecision::unchecked, void>>;
|
|
|
|
public:
|
|
enum { size = N };
|
|
|
|
FixedHash() { m_data.fill(0); }
|
|
FixedHash(Arith const& _arith) { toBigEndian(_arith, m_data); }
|
|
explicit FixedHash(bytes const& _b) { memcpy(m_data.data(), _b.data(), std::min<uint>(_b.size(), N)); }
|
|
explicit FixedHash(byte const* _bs) { memcpy(m_data.data(), _bs, N); }
|
|
|
|
operator Arith() const { return fromBigEndian<Arith>(m_data); }
|
|
|
|
operator bool() const { return ((Arith)*this) != 0; }
|
|
|
|
bool operator==(FixedHash const& _c) const { return m_data == _c.m_data; }
|
|
bool operator!=(FixedHash const& _c) const { return m_data != _c.m_data; }
|
|
bool operator<(FixedHash const& _c) const { return m_data < _c.m_data; }
|
|
|
|
FixedHash& operator^=(FixedHash const& _c) { for (auto i = 0; i < N; ++i) m_data[i] ^= _c.m_data[i]; return *this; }
|
|
FixedHash operator^(FixedHash const& _c) const { return FixedHash(*this) ^= _c; }
|
|
FixedHash& operator|=(FixedHash const& _c) { for (auto i = 0; i < N; ++i) m_data[i] |= _c.m_data[i]; return *this; }
|
|
FixedHash operator|(FixedHash const& _c) const { return FixedHash(*this) |= _c; }
|
|
FixedHash& operator&=(FixedHash const& _c) { for (auto i = 0; i < N; ++i) m_data[i] &= _c.m_data[i]; return *this; }
|
|
FixedHash operator&(FixedHash const& _c) const { return FixedHash(*this) &= _c; }
|
|
FixedHash& operator~() { for (auto i = 0; i < N; ++i) m_data[i] = ~m_data[i]; return *this; }
|
|
|
|
byte& operator[](unsigned _i) { return m_data[_i]; }
|
|
byte operator[](unsigned _i) const { return m_data[_i]; }
|
|
|
|
byte* data() { return m_data.data(); }
|
|
byte const* data() const { return m_data.data(); }
|
|
|
|
bytes asBytes() const { return bytes(data(), data() + N); }
|
|
std::array<byte, N>& asArray() { return m_data; }
|
|
std::array<byte, N> const& asArray() const { return m_data; }
|
|
|
|
private:
|
|
std::array<byte, N> m_data;
|
|
};
|
|
|
|
template <unsigned N>
|
|
inline std::ostream& operator<<(std::ostream& _out, FixedHash<N> const& _h)
|
|
{
|
|
_out << std::noshowbase << std::hex << std::setfill('0');
|
|
for (unsigned i = 0; i < N; ++i)
|
|
_out << std::setw(2) << (int)_h[i];
|
|
_out << std::dec;
|
|
return _out;
|
|
}
|
|
|
|
using h256 = FixedHash<32>;
|
|
using h160 = FixedHash<20>;
|
|
using h256s = std::vector<h256>;
|
|
using h160s = std::vector<h160>;
|
|
using h256Set = std::set<h256>;
|
|
using h160Set = std::set<h160>;
|
|
|
|
using Secret = h256;
|
|
using Address = h160;
|
|
using Addresses = h160s;
|
|
|
|
// Map types.
|
|
using StringMap = std::map<std::string, std::string>;
|
|
using u256Map = std::map<u256, u256>;
|
|
using HexMap = std::map<bytes, std::string>;
|
|
|
|
// Null/Invalid values for convenience.
|
|
static const u256 Invalid256 = ~(u256)0;
|
|
static const bytes NullBytes;
|
|
|
|
/// Converts arbitrary value to string representation using std::stringstream.
|
|
template <class _T>
|
|
std::string toString(_T const& _t)
|
|
{
|
|
std::ostringstream o;
|
|
o << _t;
|
|
return o.str();
|
|
}
|
|
|
|
/// Converts byte array to a string containing the same (binary) data. Unless
|
|
/// the byte array happens to contain ASCII data, this won't be printable.
|
|
inline std::string asString(bytes const& _b)
|
|
{
|
|
return std::string((char const*)_b.data(), (char const*)(_b.data() + _b.size()));
|
|
}
|
|
|
|
/// Converts a string to a byte array containing the string's (byte) data.
|
|
inline bytes asBytes(std::string const& _b)
|
|
{
|
|
return bytes((byte const*)_b.data(), (byte const*)(_b.data() + _b.size()));
|
|
}
|
|
|
|
/// Convert a series of bytes to the corresponding string of hex duplets.
|
|
/// @param _w specifies the width of each of the elements. Defaults to two - enough to represent a byte.
|
|
/// @example asHex("A\x69") == "4169"
|
|
template <class _T>
|
|
std::string asHex(_T const& _data, int _w = 2)
|
|
{
|
|
std::ostringstream ret;
|
|
for (auto i: _data)
|
|
ret << std::hex << std::setfill('0') << std::setw(_w) << (int)(typename std::make_unsigned<decltype(i)>::type)i;
|
|
return ret.str();
|
|
}
|
|
|
|
/// Trims a given number of elements from the front of a collection.
|
|
/// Only works for POD element types.
|
|
template <class _T>
|
|
void trimFront(_T& _t, uint _elements)
|
|
{
|
|
static_assert(std::is_pod<typename _T::value_type>::value, "");
|
|
memmove(_t.data(), _t.data() + _elements, (_t.size() - _elements) * sizeof(_t[0]));
|
|
_t.resize(_t.size() - _elements);
|
|
}
|
|
|
|
/// Pushes an element on to the front of a collection.
|
|
/// Only works for POD element types.
|
|
template <class _T, class _U>
|
|
void pushFront(_T& _t, _U _e)
|
|
{
|
|
static_assert(std::is_pod<typename _T::value_type>::value, "");
|
|
_t.push_back(_e);
|
|
memmove(_t.data() + 1, _t.data(), (_t.size() - 1) * sizeof(_e));
|
|
_t[0] = _e;
|
|
}
|
|
|
|
/// Creates a random, printable, word.
|
|
std::string randomWord();
|
|
|
|
/// Escapes a string into the C-string representation.
|
|
/// @p _all if true will escape all characters, not just the unprintable ones.
|
|
std::string escaped(std::string const& _s, bool _all = true);
|
|
|
|
/// Converts a (printable) ASCII hex character into the correspnding integer value.
|
|
/// @example fromHex('A') == 10 && fromHex('f') == 15 && fromHex('5') == 5
|
|
int fromHex(char _i);
|
|
|
|
/// Converts a (printable) ASCII hex string into the corresponding byte stream.
|
|
/// @example fromUserHex("41626261") == asBytes("Abba")
|
|
bytes fromUserHex(std::string const& _s);
|
|
|
|
/// Converts a string into the big-endian base-16 stream of integers (NOT ASCII).
|
|
/// @example toHex("A")[0] == 4 && toHex("A")[1] == 1
|
|
bytes toHex(std::string const& _s);
|
|
|
|
/// Converts a templated integer value to the big-endian byte-stream represented on a templated collection.
|
|
/// The size of the collection object will be unchanged. If it is too small, it will not represent the
|
|
/// value properly, if too big then the additional elements will be zeroed out.
|
|
/// @a _Out will typically be either std::string or bytes.
|
|
/// @a _T will typically by uint, u160, u256 or bigint.
|
|
template <class _T, class _Out>
|
|
inline void toBigEndian(_T _val, _Out& o_out)
|
|
{
|
|
for (auto i = o_out.size(); i-- != 0; _val >>= 8)
|
|
o_out[i] = (typename _Out::value_type)(uint8_t)_val;
|
|
}
|
|
|
|
/// Converts a big-endian byte-stream represented on a templated collection to a templated integer value.
|
|
/// @a _In will typically be either std::string or bytes.
|
|
/// @a _T will typically by uint, u160, u256 or bigint.
|
|
template <class _T, class _In>
|
|
inline _T fromBigEndian(_In const& _bytes)
|
|
{
|
|
_T ret = 0;
|
|
for (auto i: _bytes)
|
|
ret = (ret << 8) | (byte)(typename std::make_unsigned<typename _In::value_type>::type)i;
|
|
return ret;
|
|
}
|
|
|
|
/// Convenience functions for toBigEndian
|
|
inline std::string toBigEndianString(u256 _val) { std::string ret(32, '\0'); toBigEndian(_val, ret); return ret; }
|
|
inline std::string toBigEndianString(u160 _val) { std::string ret(20, '\0'); toBigEndian(_val, ret); return ret; }
|
|
inline bytes toBigEndian(u256 _val) { bytes ret(32); toBigEndian(_val, ret); return ret; }
|
|
inline bytes toBigEndian(u160 _val) { bytes ret(20); toBigEndian(_val, ret); return ret; }
|
|
|
|
/// Convenience function for toBigEndian.
|
|
/// @returns a string just big enough to represent @a _val.
|
|
template <class _T>
|
|
inline std::string toCompactBigEndianString(_T _val)
|
|
{
|
|
int i = 0;
|
|
for (_T v = _val; v; ++i, v >>= 8) {}
|
|
std::string ret(i, '\0');
|
|
toBigEndian(_val, ret);
|
|
return ret;
|
|
}
|
|
|
|
/// Determines the length of the common prefix of the two collections given.
|
|
/// @returns the number of elements both @a _t and @a _u share, in order, at the beginning.
|
|
/// @example commonPrefix("Hello world!", "Hello, world!") == 5
|
|
template <class _T, class _U>
|
|
uint commonPrefix(_T const& _t, _U const& _u)
|
|
{
|
|
uint s = std::min<uint>(_t.size(), _u.size());
|
|
for (uint i = 0;; ++i)
|
|
if (i == s || _t[i] != _u[i])
|
|
return i;
|
|
return s;
|
|
}
|
|
|
|
/// Convert the given value into h160 (160-bit unsigned integer) using the right 20 bytes.
|
|
inline h160 right160(h256 const& _t)
|
|
{
|
|
h160 ret;
|
|
memcpy(ret.data(), _t.data() + 10, 20);
|
|
return ret;
|
|
}
|
|
|
|
/// Convert the given value into h160 (160-bit unsigned integer) using the left 20 bytes.
|
|
inline h160 left160(h256 const& _t)
|
|
{
|
|
h160 ret;
|
|
memcpy(&ret[0], _t.data(), 20);
|
|
return ret;
|
|
}
|
|
|
|
/// Convert the given value into u160 (160-bit unsigned integer) by taking the lowest order 160-bits and discarding the rest.
|
|
inline u160 low160(u256 const& _t)
|
|
{
|
|
return (u160)(_t & ((((u256)1) << 160) - 1));
|
|
}
|
|
|
|
inline u160 low160(bigint const& _t)
|
|
{
|
|
return (u160)(_t & ((((bigint)1) << 160) - 1));
|
|
}
|
|
|
|
/// Convert the given value into u160 (160-bit unsigned integer) by taking the lowest order 160-bits and discarding the rest.
|
|
inline u160 high160(u256 const& _t)
|
|
{
|
|
return (u160)(_t >> 96);
|
|
}
|
|
|
|
|
|
/// Concatenate two vectors of elements. _T must be POD.
|
|
template <class _T>
|
|
inline std::vector<_T>& operator+=(std::vector<typename std::enable_if<std::is_pod<_T>::value, _T>::type>& _a, std::vector<_T> const& _b)
|
|
{
|
|
auto s = _a.size();
|
|
_a.resize(_a.size() + _b.size());
|
|
memcpy(_a.data() + s, _b.data(), _b.size() * sizeof(_T));
|
|
return _a;
|
|
|
|
}
|
|
|
|
/// Concatenate two vectors of elements. _T must be POD.
|
|
template <class _T>
|
|
inline std::vector<_T> operator+(std::vector<typename std::enable_if<std::is_pod<_T>::value, _T>::type> const& _a, std::vector<_T> const& _b)
|
|
{
|
|
std::vector<_T> ret(_a);
|
|
return ret += _b;
|
|
}
|
|
|
|
/// SHA-3 convenience routines.
|
|
void sha3(bytesConstRef _input, bytesRef _output);
|
|
std::string sha3(std::string const& _input, bool _hex);
|
|
bytes sha3Bytes(bytesConstRef _input);
|
|
inline bytes sha3Bytes(std::string const& _input) { return sha3Bytes((std::string*)&_input); }
|
|
inline bytes sha3Bytes(bytes const& _input) { return sha3Bytes((bytes*)&_input); }
|
|
h256 sha3(bytesConstRef _input);
|
|
inline h256 sha3(bytes const& _input) { return sha3(bytesConstRef((bytes*)&_input)); }
|
|
inline h256 sha3(std::string const& _input) { return sha3(bytesConstRef(_input)); }
|
|
|
|
/// Convert a private key into the public key equivalent.
|
|
/// @returns 0 if it's not a valid private key.
|
|
Address toAddress(h256 _private);
|
|
|
|
class KeyPair
|
|
{
|
|
public:
|
|
KeyPair() {}
|
|
KeyPair(Secret _k): m_secret(_k), m_address(toAddress(_k)) {}
|
|
|
|
static KeyPair create();
|
|
|
|
Secret secret() const { return m_secret; }
|
|
Address address() const { return m_address; }
|
|
|
|
private:
|
|
Secret m_secret;
|
|
Address m_address;
|
|
};
|
|
|
|
}
|
|
|