You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

759 lines
19 KiB

/*
This file is part of cpp-ethereum.
cpp-ethereum is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
cpp-ethereum is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with cpp-ethereum. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file State.cpp
* @author Gav Wood <i@gavwood.com>
* @date 2014
*/
#include "State.h"
#include <secp256k1/secp256k1.h>
#include <boost/filesystem.hpp>
#include <time.h>
#include <random>
#include "BlockChain.h"
#include "Instruction.h"
#include "Exceptions.h"
#include "Dagger.h"
#include "Defaults.h"
#include "ExtVM.h"
#include "VM.h"
using namespace std;
using namespace eth;
u256 eth::c_genesisDifficulty = (u256)1 << 22;
std::map<Address, AddressState> const& eth::genesisState()
{
static std::map<Address, AddressState> s_ret;
if (s_ret.empty())
{
// Initialise.
s_ret[Address(fromHex("8a40bfaa73256b60764c1bf40675a99083efb075"))] = AddressState(u256(1) << 200, 0, h256(), EmptySHA3);
s_ret[Address(fromHex("e6716f9544a56c530d868e4bfbacb172315bdead"))] = AddressState(u256(1) << 200, 0, h256(), EmptySHA3);
s_ret[Address(fromHex("1e12515ce3e0f817a4ddef9ca55788a1d66bd2df"))] = AddressState(u256(1) << 200, 0, h256(), EmptySHA3);
s_ret[Address(fromHex("1a26338f0d905e295fccb71fa9ea849ffa12aaf4"))] = AddressState(u256(1) << 200, 0, h256(), EmptySHA3);
}
return s_ret;
}
Overlay State::openDB(std::string _path, bool _killExisting)
{
if (_path.empty())
_path = Defaults::get()->m_dbPath;
boost::filesystem::create_directory(_path);
if (_killExisting)
boost::filesystem::remove_all(_path + "/state");
ldb::Options o;
o.create_if_missing = true;
ldb::DB* db = nullptr;
ldb::DB::Open(o, _path + "/state", &db);
return Overlay(db);
}
State::State(Address _coinbaseAddress, Overlay const& _db):
m_db(_db),
m_state(&m_db),
m_ourAddress(_coinbaseAddress)
{
m_blockReward = 1500 * finney;
secp256k1_start();
// Initialise to the state entailed by the genesis block; this guarantees the trie is built correctly.
m_state.init();
eth::commit(genesisState(), m_db, m_state);
// cnote << "State root: " << m_state.root();
m_previousBlock = BlockInfo::genesis();
// cnote << "Genesis hash:" << m_previousBlock.hash;
resetCurrent();
assert(m_state.root() == m_previousBlock.stateRoot);
}
State::State(State const& _s):
m_db(_s.m_db),
m_state(&m_db, _s.m_state.root()),
m_transactions(_s.m_transactions),
m_transactionSet(_s.m_transactionSet),
m_cache(_s.m_cache),
m_previousBlock(_s.m_previousBlock),
m_currentBlock(_s.m_currentBlock),
m_currentNumber(_s.m_currentNumber),
m_ourAddress(_s.m_ourAddress),
m_blockReward(_s.m_blockReward)
{
}
State& State::operator=(State const& _s)
{
m_db = _s.m_db;
m_state.open(&m_db, _s.m_state.root());
m_transactions = _s.m_transactions;
m_transactionSet = _s.m_transactionSet;
m_cache = _s.m_cache;
m_previousBlock = _s.m_previousBlock;
m_currentBlock = _s.m_currentBlock;
m_currentNumber = _s.m_currentNumber;
m_ourAddress = _s.m_ourAddress;
m_blockReward = _s.m_blockReward;
return *this;
}
void State::ensureCached(Address _a, bool _requireCode, bool _forceCreate) const
{
ensureCached(m_cache, _a, _requireCode, _forceCreate);
}
void State::ensureCached(std::map<Address, AddressState>& _cache, Address _a, bool _requireCode, bool _forceCreate) const
{
auto it = _cache.find(_a);
if (it == _cache.end())
{
// populate basic info.
string stateBack = m_state.at(_a);
if (stateBack.empty() && !_forceCreate)
return;
RLP state(stateBack);
AddressState s;
if (state.isNull())
s = AddressState(0, 0, h256(), EmptySHA3);
else
s = AddressState(state[0].toInt<u256>(), state[1].toInt<u256>(), state[2].toHash<h256>(), state[3].toHash<h256>());
bool ok;
tie(it, ok) = _cache.insert(make_pair(_a, s));
}
if (_requireCode && it != _cache.end() && !it->second.isFreshCode())
it->second.noteCode(it->second.codeHash() == EmptySHA3 ? bytesConstRef() : bytesConstRef(m_db.lookup(it->second.codeHash())));
}
void State::commit()
{
eth::commit(m_cache, m_db, m_state);
m_cache.clear();
}
bool State::sync(BlockChain const& _bc)
{
return sync(_bc, _bc.currentHash());
}
bool State::sync(BlockChain const& _bc, h256 _block)
{
bool ret = false;
// BLOCK
BlockInfo bi;
try
{
auto b = _bc.block(_block);
bi.populate(b);
bi.verifyInternals(_bc.block(_block));
}
catch (...)
{
// TODO: Slightly nicer handling? :-)
cerr << "ERROR: Corrupt block-chain! Delete your block-chain DB and restart." << endl;
exit(1);
}
if (bi == m_currentBlock)
{
// We mined the last block.
// Our state is good - we just need to move on to next.
m_previousBlock = m_currentBlock;
resetCurrent();
m_currentNumber++;
ret = true;
}
else if (bi == m_previousBlock)
{
// No change since last sync.
// Carry on as we were.
}
else
{
// New blocks available, or we've switched to a different branch. All change.
// Find most recent state dump and replay what's left.
// (Most recent state dump might end up being genesis.)
std::vector<h256> chain;
while (bi.stateRoot != BlockInfo::genesis().hash && m_db.lookup(bi.stateRoot).empty()) // while we don't have the state root of the latest block...
{
chain.push_back(bi.hash); // push back for later replay.
bi.populate(_bc.block(bi.parentHash)); // move to parent.
}
m_previousBlock = bi;
resetCurrent();
// Iterate through in reverse, playing back each of the blocks.
for (auto it = chain.rbegin(); it != chain.rend(); ++it)
playback(_bc.block(*it), true);
m_currentNumber = _bc.details(_block).number + 1;
resetCurrent();
ret = true;
}
return ret;
}
map<Address, u256> State::addresses() const
{
map<Address, u256> ret;
for (auto i: m_cache)
if (i.second.isAlive())
ret[i.first] = i.second.balance();
for (auto const& i: m_state)
if (m_cache.find(i.first) == m_cache.end())
ret[i.first] = RLP(i.second)[0].toInt<u256>();
return ret;
}
void State::resetCurrent()
{
m_transactions.clear();
m_transactionSet.clear();
m_cache.clear();
m_currentBlock = BlockInfo();
m_currentBlock.coinbaseAddress = m_ourAddress;
m_currentBlock.stateRoot = m_previousBlock.stateRoot;
m_currentBlock.parentHash = m_previousBlock.hash;
m_currentBlock.sha3Transactions = h256();
m_currentBlock.sha3Uncles = h256();
// Update timestamp according to clock.
m_currentBlock.timestamp = time(0);
m_state.setRoot(m_currentBlock.stateRoot);
}
bool State::cull(TransactionQueue& _tq) const
{
bool ret = false;
auto ts = _tq.transactions();
for (auto const& i: ts)
{
if (!m_transactionSet.count(i.first))
{
try
{
Transaction t(i.second);
if (t.nonce <= transactionsFrom(t.sender()))
{
_tq.drop(i.first);
ret = true;
}
}
catch (...)
{
_tq.drop(i.first);
ret = true;
}
}
}
return ret;
}
bool State::sync(TransactionQueue& _tq)
{
// TRANSACTIONS
bool ret = false;
auto ts = _tq.transactions();
vector<pair<h256, bytes>> futures;
for (int goodTxs = 1; goodTxs;)
{
goodTxs = 0;
for (auto const& i: ts)
{
if (!m_transactionSet.count(i.first))
{
// don't have it yet! Execute it now.
try
{
execute(i.second);
ret = true;
_tq.noteGood(i);
++goodTxs;
}
catch (InvalidNonce const& in)
{
if (in.required > in.candidate)
{
// too old
_tq.drop(i.first);
ret = true;
}
else
_tq.setFuture(i);
}
catch (std::exception const&)
{
// Something else went wrong - drop it.
_tq.drop(i.first);
ret = true;
}
}
}
}
return ret;
}
u256 State::playback(bytesConstRef _block, bool _fullCommit)
{
try
{
m_currentBlock.populate(_block);
m_currentBlock.verifyInternals(_block);
return playback(_block, BlockInfo(), _fullCommit);
}
catch (...)
{
// TODO: Slightly nicer handling? :-)
cerr << "ERROR: Corrupt block-chain! Delete your block-chain DB and restart." << endl;
exit(1);
}
}
u256 State::playback(bytesConstRef _block, BlockInfo const& _bi, BlockInfo const& _parent, BlockInfo const& _grandParent, bool _fullCommit)
{
m_currentBlock = _bi;
m_previousBlock = _parent;
return playback(_block, _grandParent, _fullCommit);
}
u256 State::playback(bytesConstRef _block, BlockInfo const& _grandParent, bool _fullCommit)
{
if (m_currentBlock.parentHash != m_previousBlock.hash)
throw InvalidParentHash();
// cnote << "playback begins:" << m_state.root();
// cnote << m_state;
// All ok with the block generally. Play back the transactions now...
for (auto const& i: RLP(_block)[1])
execute(i.data());
// Initialise total difficulty calculation.
u256 tdIncrease = m_currentBlock.difficulty;
// Check uncles & apply their rewards to state.
// TODO: Check for uniqueness of uncles.
Addresses rewarded;
for (auto const& i: RLP(_block)[2])
{
BlockInfo uncle = BlockInfo::fromHeader(i.data());
if (m_previousBlock.parentHash != uncle.parentHash)
throw InvalidUncle();
if (_grandParent)
uncle.verifyParent(_grandParent);
tdIncrease += uncle.difficulty;
rewarded.push_back(uncle.coinbaseAddress);
}
applyRewards(rewarded);
// Commit all cached state changes to the state trie.
commit();
// Hash the state trie and check against the state_root hash in m_currentBlock.
if (m_currentBlock.stateRoot != rootHash())
{
cwarn << "Bad state root!";
cnote << "Given to be:" << m_currentBlock.stateRoot;
cnote << TrieDB<Address, Overlay>(&m_db, m_currentBlock.stateRoot);
cnote << "Calculated to be:" << rootHash();
cnote << m_state;
cnote << *this;
// Rollback the trie.
m_db.rollback();
throw InvalidStateRoot();
}
if (_fullCommit)
{
// Commit the new trie to disk.
m_db.commit();
m_previousBlock = m_currentBlock;
resetCurrent();
}
else
{
m_db.rollback();
resetCurrent();
}
return tdIncrease;
}
// @returns the block that represents the difference between m_previousBlock and m_currentBlock.
// (i.e. all the transactions we executed).
void State::commitToMine(BlockChain const& _bc)
{
if (m_currentBlock.sha3Transactions != h256() || m_currentBlock.sha3Uncles != h256())
{
Addresses uncleAddresses;
for (auto i: RLP(m_currentUncles))
uncleAddresses.push_back(i[2].toHash<Address>());
unapplyRewards(uncleAddresses);
}
cnote << "Commiting to mine on" << m_previousBlock.hash;
RLPStream uncles;
Addresses uncleAddresses;
if (m_previousBlock != BlockInfo::genesis())
{
// Find uncles if we're not a direct child of the genesis.
// cout << "Checking " << m_previousBlock.hash << ", parent=" << m_previousBlock.parentHash << endl;
auto us = _bc.details(m_previousBlock.parentHash).children;
assert(us.size() >= 1); // must be at least 1 child of our grandparent - it's our own parent!
uncles.appendList(us.size() - 1); // one fewer - uncles precludes our parent from the list of grandparent's children.
for (auto const& u: us)
if (u != m_previousBlock.hash) // ignore our own parent - it's not an uncle.
{
BlockInfo ubi(_bc.block(u));
ubi.fillStream(uncles, true);
uncleAddresses.push_back(ubi.coinbaseAddress);
}
}
else
uncles.appendList(0);
applyRewards(uncleAddresses);
RLPStream txs(m_transactions.size());
for (auto const& i: m_transactions)
i.fillStream(txs);
txs.swapOut(m_currentTxs);
uncles.swapOut(m_currentUncles);
m_currentBlock.sha3Transactions = sha3(m_currentTxs);
m_currentBlock.sha3Uncles = sha3(m_currentUncles);
// Commit any and all changes to the trie that are in the cache, then update the state root accordingly.
commit();
cnote << "stateRoot:" << m_state.root();
// cnote << m_state;
// cnote << *this;
m_currentBlock.stateRoot = m_state.root();
m_currentBlock.parentHash = m_previousBlock.hash;
}
MineInfo State::mine(uint _msTimeout)
{
// Update difficulty according to timestamp.
m_currentBlock.difficulty = m_currentBlock.calculateDifficulty(m_previousBlock);
// TODO: Miner class that keeps dagger between mine calls (or just non-polling mining).
MineInfo ret = m_dagger.mine(/*out*/m_currentBlock.nonce, m_currentBlock.headerHashWithoutNonce(), m_currentBlock.difficulty, _msTimeout);
if (ret.completed)
{
// Got it!
// Commit to disk.
m_db.commit();
// Compile block:
RLPStream ret;
ret.appendList(3);
m_currentBlock.fillStream(ret, true);
ret.appendRaw(m_currentTxs);
ret.appendRaw(m_currentUncles);
ret.swapOut(m_currentBytes);
m_currentBlock.hash = sha3(m_currentBytes);
cnote << "Mined " << m_currentBlock.hash << "(parent: " << m_currentBlock.parentHash << ")";
}
else
m_currentBytes.clear();
return ret;
}
bool State::addressInUse(Address _id) const
{
ensureCached(_id, false, false);
auto it = m_cache.find(_id);
if (it == m_cache.end())
return false;
return true;
}
bool State::addressHasCode(Address _id) const
{
ensureCached(_id, false, false);
auto it = m_cache.find(_id);
if (it == m_cache.end())
return false;
return it->second.isFreshCode() || it->second.codeHash() != EmptySHA3;
}
u256 State::balance(Address _id) const
{
ensureCached(_id, false, false);
auto it = m_cache.find(_id);
if (it == m_cache.end())
return 0;
return it->second.balance();
}
void State::noteSending(Address _id)
{
ensureCached(_id, false, false);
auto it = m_cache.find(_id);
if (it == m_cache.end())
m_cache[_id] = AddressState(0, 1, h256(), EmptySHA3);
else
it->second.incNonce();
}
void State::addBalance(Address _id, u256 _amount)
{
ensureCached(_id, false, false);
auto it = m_cache.find(_id);
if (it == m_cache.end())
m_cache[_id] = AddressState(_amount, 0, h256(), EmptySHA3);
else
it->second.addBalance(_amount);
}
void State::subBalance(Address _id, bigint _amount)
{
ensureCached(_id, false, false);
auto it = m_cache.find(_id);
if (it == m_cache.end() || (bigint)it->second.balance() < _amount)
throw NotEnoughCash();
else
it->second.addBalance(-_amount);
}
u256 State::transactionsFrom(Address _id) const
{
ensureCached(_id, false, false);
auto it = m_cache.find(_id);
if (it == m_cache.end())
return 0;
else
return it->second.nonce();
}
u256 State::storage(Address _id, u256 _memory) const
{
ensureCached(_id, false, false);
auto it = m_cache.find(_id);
// Account doesn't exist - exit now.
if (it == m_cache.end())
return 0;
// See if it's in the account's storage cache.
auto mit = it->second.storage().find(_memory);
if (mit != it->second.storage().end())
return mit->second;
// Not in the storage cache - go to the DB.
TrieDB<h256, Overlay> memdb(const_cast<Overlay*>(&m_db), it->second.oldRoot()); // promise we won't change the overlay! :)
string payload = memdb.at(_memory);
u256 ret = payload.size() ? RLP(payload).toInt<u256>() : 0;
it->second.setStorage(_memory, ret);
return ret;
}
map<u256, u256> State::storage(Address _id) const
{
map<u256, u256> ret;
ensureCached(_id, false, false);
auto it = m_cache.find(_id);
if (it != m_cache.end())
{
// Pull out all values from trie storage.
if (it->second.oldRoot())
{
TrieDB<h256, Overlay> memdb(const_cast<Overlay*>(&m_db), it->second.oldRoot()); // promise we won't alter the overlay! :)
ret = it->second.storage();
for (auto const& i: memdb)
ret[i.first] = RLP(i.second).toInt<u256>();
}
// Then merge cached storage over the top.
for (auto const& i: it->second.storage())
if (i.second)
ret.insert(i);
else
ret.erase(i.first);
}
return ret;
}
bytes const& State::code(Address _contract) const
{
if (!addressHasCode(_contract))
return NullBytes;
ensureCached(_contract, true, false);
return m_cache[_contract].code();
}
void State::execute(bytesConstRef _rlp)
{
Executive e(*this);
{
e.setup(_rlp);
e.go();
e.finalize();
}
// Add to the user-originated transactions that we've executed.
m_transactions.push_back(e.t());
m_transactionSet.insert(e.t().sha3());
}
bool State::call(Address _receiveAddress, Address _senderAddress, u256 _value, u256 _gasPrice, bytesConstRef _data, u256* _gas, bytesRef _out, Address _originAddress)
{
if (!_originAddress)
_originAddress = _senderAddress;
// cnote << "Transferring" << formatBalance(_value) << "to receiver.";
addBalance(_receiveAddress, _value);
if (addressHasCode(_receiveAddress))
{
VM vm(*_gas);
ExtVM evm(*this, _receiveAddress, _senderAddress, _originAddress, _value, _gasPrice, _data, &code(_receiveAddress));
bool revert = false;
try
{
auto out = vm.go(evm);
memcpy(_out.data(), out.data(), std::min(out.size(), _out.size()));
}
catch (OutOfGas const& /*_e*/)
{
clog(StateChat) << "Out of Gas! Reverting.";
revert = true;
}
catch (VMException const& _e)
{
clog(StateChat) << "VM Exception: " << _e.description();
}
catch (Exception const& _e)
{
clog(StateChat) << "Exception in VM: " << _e.description();
}
catch (std::exception const& _e)
{
clog(StateChat) << "std::exception in VM: " << _e.what();
}
// Write state out only in the case of a non-excepted transaction.
if (revert)
evm.revert();
*_gas = vm.gas();
return !revert;
}
return true;
}
h160 State::create(Address _sender, u256 _endowment, u256 _gasPrice, u256* _gas, bytesConstRef _code, Address _origin)
{
if (!_origin)
_origin = _sender;
Address newAddress = right160(sha3(rlpList(_sender, transactionsFrom(_sender) - 1)));
while (addressInUse(newAddress))
newAddress = (u160)newAddress + 1;
// Set up new account...
m_cache[newAddress] = AddressState(0, 0, h256(), h256());
// Execute _init.
VM vm(*_gas);
ExtVM evm(*this, newAddress, _sender, _origin, _endowment, _gasPrice, bytesConstRef(), _code);
bool revert = false;
bytesConstRef out;
try
{
out = vm.go(evm);
}
catch (OutOfGas const& /*_e*/)
{
clog(StateChat) << "Out of Gas! Reverting.";
revert = true;
}
catch (VMException const& _e)
{
clog(StateChat) << "VM Exception: " << _e.description();
}
catch (Exception const& _e)
{
clog(StateChat) << "Exception in VM: " << _e.description();
}
catch (std::exception const& _e)
{
clog(StateChat) << "std::exception in VM: " << _e.what();
}
// Write state out only in the case of a non-out-of-gas transaction.
if (revert)
evm.revert();
// Kill contract if there's no code.
if (out.empty())
{
m_cache.erase(newAddress);
newAddress = Address();
}
else
m_cache[newAddress].setCode(out);
*_gas = vm.gas();
return newAddress;
}
void State::applyRewards(Addresses const& _uncleAddresses)
{
u256 r = m_blockReward;
for (auto const& i: _uncleAddresses)
{
addBalance(i, m_blockReward * 3 / 4);
r += m_blockReward / 8;
}
addBalance(m_currentBlock.coinbaseAddress, r);
}
void State::unapplyRewards(Addresses const& _uncleAddresses)
{
u256 r = m_blockReward;
for (auto const& i: _uncleAddresses)
{
subBalance(i, m_blockReward * 3 / 4);
r += m_blockReward / 8;
}
subBalance(m_currentBlock.coinbaseAddress, r);
}