You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
360 lines
13 KiB
360 lines
13 KiB
/*
|
|
This file is part of cpp-ethereum.
|
|
|
|
cpp-ethereum is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
cpp-ethereum is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with cpp-ethereum. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
/** @file State.h
|
|
* @author Gav Wood <i@gavwood.com>
|
|
* @date 2014
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <array>
|
|
#include <map>
|
|
#include <unordered_map>
|
|
#include "Common.h"
|
|
#include "RLP.h"
|
|
#include "TransactionQueue.h"
|
|
#include "Exceptions.h"
|
|
#include "BlockInfo.h"
|
|
#include "AddressState.h"
|
|
#include "Transaction.h"
|
|
#include "TrieDB.h"
|
|
#include "Dagger.h"
|
|
|
|
namespace eth
|
|
{
|
|
|
|
class BlockChain;
|
|
|
|
extern u256 c_genesisDifficulty;
|
|
std::map<Address, AddressState> const& genesisState();
|
|
|
|
#define ETH_SENDER_PAYS_SETUP 1
|
|
|
|
struct FeeStructure
|
|
{
|
|
/// The fee structure. Values yet to be agreed on...
|
|
void setMultiplier(u256 _x); ///< The current block multiplier.
|
|
u256 multiplier() const;
|
|
u256 m_stepFee;
|
|
u256 m_dataFee;
|
|
u256 m_memoryFee;
|
|
u256 m_extroFee;
|
|
u256 m_cryptoFee;
|
|
u256 m_newContractFee;
|
|
u256 m_txFee;
|
|
};
|
|
|
|
template <unsigned T> class UnitTest {};
|
|
|
|
static const std::map<u256, u256> EmptyMapU256U256;
|
|
|
|
/**
|
|
* @brief Model of the current state of the ledger.
|
|
* Maintains current ledger (m_current) as a fast hash-map. This is hashed only when required (i.e. to create or verify a block).
|
|
* Should maintain ledger as of last N blocks, also, in case we end up on the wrong branch.
|
|
*/
|
|
class State
|
|
{
|
|
template <unsigned T> friend class UnitTest;
|
|
public:
|
|
/// Construct state object.
|
|
State(Address _coinbaseAddress, Overlay const& _db);
|
|
|
|
/// Copy state object.
|
|
State(State const& _s);
|
|
|
|
/// Copy state object.
|
|
State& operator=(State const& _s);
|
|
|
|
/// Set the coinbase address for any transactions we do.
|
|
/// This causes a complete reset of current block.
|
|
void setAddress(Address _coinbaseAddress) { m_ourAddress = _coinbaseAddress; resetCurrent(); }
|
|
Address address() const { return m_ourAddress; }
|
|
|
|
/// Open a DB - useful for passing into the constructor & keeping for other states that are necessary.
|
|
static Overlay openDB(std::string _path, bool _killExisting = false);
|
|
static Overlay openDB(bool _killExisting = false) { return openDB(std::string(), _killExisting); }
|
|
|
|
/// @returns the set containing all addresses currently in use in Ethereum.
|
|
std::map<Address, u256> addresses() const;
|
|
|
|
/// Cancels transactions and rolls back the state to the end of the previous block.
|
|
/// @warning This will only work for on any transactions after you called the last commitToMine().
|
|
/// It's one or the other.
|
|
void rollback() { m_cache.clear(); }
|
|
|
|
/// Prepares the current state for mining.
|
|
/// Commits all transactions into the trie, compiles uncles and transactions list, applies all
|
|
/// rewards and populates the current block header with the appropriate hashes.
|
|
/// The only thing left to do after this is to actually mine().
|
|
///
|
|
/// This may be called multiple times and without issue, however, until the current state is cleared,
|
|
/// calls after the first are ignored.
|
|
void commitToMine(BlockChain const& _bc);
|
|
|
|
/// Attempt to find valid nonce for block that this state represents.
|
|
/// @param _msTimeout Timeout before return in milliseconds.
|
|
/// @returns a non-empty byte array containing the block if it got lucky. In this case, call blockData()
|
|
/// to get the block if you need it later.
|
|
MineInfo mine(uint _msTimeout = 1000);
|
|
|
|
/// Get the complete current block, including valid nonce.
|
|
/// Only valid after mine() returns true.
|
|
bytes const& blockData() const { return m_currentBytes; }
|
|
|
|
/// Sync our state with the block chain.
|
|
/// This basically involves wiping ourselves if we've been superceded and rebuilding from the transaction queue.
|
|
bool sync(BlockChain const& _bc);
|
|
|
|
/// Sync with the block chain, but rather than synching to the latest block, instead sync to the given block.
|
|
bool sync(BlockChain const& _bc, h256 _blockHash);
|
|
|
|
/// Sync our transactions, killing those from the queue that we have and assimilating those that we don't.
|
|
bool sync(TransactionQueue& _tq);
|
|
/// Like sync but only operate on _tq, killing the invalid/old ones.
|
|
bool cull(TransactionQueue& _tq) const;
|
|
|
|
/// Execute a given transaction.
|
|
void execute(bytes const& _rlp) { return execute(&_rlp); }
|
|
void execute(bytesConstRef _rlp);
|
|
|
|
/// Check if the address is a valid normal (non-contract) account address.
|
|
bool isNormalAddress(Address _address) const;
|
|
|
|
/// Check if the address is a valid contract's address.
|
|
bool isContractAddress(Address _address) const;
|
|
|
|
/// Get an account's balance.
|
|
/// @returns 0 if the address has never been used.
|
|
u256 balance(Address _id) const;
|
|
|
|
/// Add some amount to balance.
|
|
/// Will initialise the address if it has never been used.
|
|
void addBalance(Address _id, u256 _amount);
|
|
|
|
/** Subtract some amount from balance.
|
|
* @throws NotEnoughCash if balance of @a _id is less than @a _value (or has never been used).
|
|
* @note We use bigint here as we don't want any accidental problems with negative numbers.
|
|
*/
|
|
void subBalance(Address _id, bigint _value);
|
|
|
|
/// Get the value of a memory position of a contract.
|
|
/// @returns 0 if no contract exists at that address.
|
|
u256 contractMemory(Address _contract, u256 _memory) const;
|
|
|
|
/// Get the memory of a contract.
|
|
/// @returns std::map<u256, u256> if no contract exists at that address.
|
|
std::map<u256, u256> const& contractMemory(Address _contract) const;
|
|
|
|
/// Note that the given address is sending a transaction and thus increment the associated ticker.
|
|
void noteSending(Address _id);
|
|
|
|
/// Get the number of transactions a particular address has sent (used for the transaction nonce).
|
|
/// @returns 0 if the address has never been used.
|
|
u256 transactionsFrom(Address _address) const;
|
|
|
|
/// The hash of the root of our state tree.
|
|
h256 rootHash() const { return m_state.root(); }
|
|
|
|
/// Get the list of pending transactions.
|
|
std::map<h256, Transaction> const& pending() const { return m_transactions; }
|
|
|
|
/// Execute all transactions within a given block.
|
|
/// @returns the additional total difficulty.
|
|
/// If the _grandParent is passed, it will check the validity of each of the uncles.
|
|
/// This might throw.
|
|
u256 playback(bytesConstRef _block, BlockInfo const& _bi, BlockInfo const& _parent, BlockInfo const& _grandParent, bool _fullCommit);
|
|
|
|
/// Get the fee associated for a contract created with the given data.
|
|
u256 fee(uint _dataCount) const { return m_fees.m_memoryFee * _dataCount + m_fees.m_newContractFee; }
|
|
|
|
/// Get the fee associated for a normal transaction.
|
|
u256 fee() const { return m_fees.m_txFee; }
|
|
|
|
private:
|
|
/// Fee-adder on destruction RAII class.
|
|
struct MinerFeeAdder
|
|
{
|
|
~MinerFeeAdder() { /*state->addBalance(state->m_currentBlock.coinbaseAddress, fee);*/ } // No fees paid now.
|
|
State* state;
|
|
u256 fee;
|
|
};
|
|
|
|
/// Retrieve all information about a given address into the cache.
|
|
/// If _requireMemory is true, grab the full memory should it be a contract item.
|
|
/// If _forceCreate is true, then insert a default item into the cache, in the case it doesn't
|
|
/// exist in the DB.
|
|
void ensureCached(Address _a, bool _requireMemory, bool _forceCreate) const;
|
|
|
|
/// Commit all changes waiting in the address cache to the DB.
|
|
void commit();
|
|
|
|
/// Execute the given block on our previous block. This will set up m_currentBlock first, then call the other playback().
|
|
/// Any failure will be critical.
|
|
u256 playback(bytesConstRef _block, bool _fullCommit);
|
|
|
|
/// Execute the given block, assuming it corresponds to m_currentBlock. If _grandParent is passed, it will be used to check the uncles.
|
|
/// Throws on failure.
|
|
u256 playback(bytesConstRef _block, BlockInfo const& _grandParent, bool _fullCommit);
|
|
|
|
/// Execute a decoded transaction object, given a sender.
|
|
/// This will append @a _t to the transaction list and change the state accordingly.
|
|
void executeBare(Transaction const& _t, Address _sender);
|
|
|
|
/// Execute a contract transaction.
|
|
void execute(Address _myAddress, Address _txSender, u256 _txValue, u256s const& _txData, u256* o_totalFee);
|
|
|
|
/// Sets m_currentBlock to a clean state, (i.e. no change from m_previousBlock).
|
|
void resetCurrent();
|
|
|
|
/// Finalise the block, applying the earned rewards.
|
|
void applyRewards(Addresses const& _uncleAddresses);
|
|
|
|
/// Unfinalise the block, unapplying the earned rewards.
|
|
void unapplyRewards(Addresses const& _uncleAddresses);
|
|
|
|
Overlay m_db; ///< Our overlay for the state tree.
|
|
TrieDB<Address, Overlay> m_state; ///< Our state tree, as an Overlay DB.
|
|
std::map<h256, Transaction> m_transactions; ///< The current list of transactions that we've included in the state.
|
|
|
|
mutable std::map<Address, AddressState> m_cache; ///< Our address cache. This stores the states of each address that has (or at least might have) been changed.
|
|
|
|
BlockInfo m_previousBlock; ///< The previous block's information.
|
|
BlockInfo m_currentBlock; ///< The current block's information.
|
|
bytes m_currentBytes; ///< The current block.
|
|
uint m_currentNumber;
|
|
|
|
bytes m_currentTxs;
|
|
bytes m_currentUncles;
|
|
|
|
Address m_ourAddress; ///< Our address (i.e. the address to which fees go).
|
|
|
|
Dagger m_dagger;
|
|
|
|
FeeStructure m_fees;
|
|
u256 m_blockReward;
|
|
|
|
static std::string c_defaultPath;
|
|
|
|
friend std::ostream& operator<<(std::ostream& _out, State const& _s);
|
|
};
|
|
|
|
inline std::ostream& operator<<(std::ostream& _out, State const& _s)
|
|
{
|
|
_out << "--- " << _s.rootHash() << std::endl;
|
|
std::set<Address> d;
|
|
for (auto const& i: TrieDB<Address, Overlay>(const_cast<Overlay*>(&_s.m_db), _s.rootHash()))
|
|
{
|
|
auto it = _s.m_cache.find(i.first);
|
|
if (it == _s.m_cache.end())
|
|
{
|
|
RLP r(i.second);
|
|
_out << "[ " << (r.itemCount() == 3 ? "CONTRACT] " : " NORMAL] ") << i.first << ": " << std::dec << r[1].toInt<u256>() << "@" << r[0].toInt<u256>();
|
|
if (r.itemCount() == 3)
|
|
{
|
|
_out << " *" << r[2].toHash<h256>();
|
|
TrieDB<h256, Overlay> memdb(const_cast<Overlay*>(&_s.m_db), r[2].toHash<h256>()); // promise we won't alter the overlay! :)
|
|
std::map<u256, u256> mem;
|
|
for (auto const& j: memdb)
|
|
{
|
|
_out << std::endl << " [" << j.first << ":" << asHex(j.second) << "]";
|
|
#ifdef __clang__
|
|
auto mFinder = mem.find(j.first);
|
|
if (mFinder == mem.end())
|
|
mem.insert(std::make_pair(j.first, RLP(j.second).toInt<u256>()));
|
|
else
|
|
mFinder->second = RLP(j.second).toInt<u256>();
|
|
#else
|
|
mem[j.first] = RLP(j.second).toInt<u256>();
|
|
#endif
|
|
}
|
|
_out << std::endl << mem;
|
|
}
|
|
_out << std::endl;
|
|
}
|
|
else
|
|
d.insert(i.first);
|
|
}
|
|
for (auto i: _s.m_cache)
|
|
if (i.second.type() == AddressType::Dead)
|
|
_out << "[XXX " << i.first << std::endl;
|
|
else
|
|
{
|
|
_out << (d.count(i.first) ? "[ ! " : "[ * ") << (i.second.type() == AddressType::Contract ? "CONTRACT] " : " NORMAL] ") << i.first << ": " << std::dec << i.second.nonce() << "@" << i.second.balance();
|
|
if (i.second.type() == AddressType::Contract)
|
|
{
|
|
if (i.second.haveMemory())
|
|
{
|
|
_out << std::endl << i.second.memory();
|
|
}
|
|
else
|
|
{
|
|
_out << " *" << i.second.oldRoot();
|
|
TrieDB<h256, Overlay> memdb(const_cast<Overlay*>(&_s.m_db), i.second.oldRoot()); // promise we won't alter the overlay! :)
|
|
std::map<u256, u256> mem;
|
|
for (auto const& j: memdb)
|
|
{
|
|
_out << std::endl << " [" << j.first << ":" << asHex(j.second) << "]";
|
|
#ifdef __clang__
|
|
auto mFinder = mem.find(j.first);
|
|
if (mFinder == mem.end())
|
|
mem.insert(std::make_pair(j.first, RLP(j.second).toInt<u256>()));
|
|
else
|
|
mFinder->second = RLP(j.second).toInt<u256>();
|
|
#else
|
|
mem[j.first] = RLP(j.second).toInt<u256>();
|
|
#endif
|
|
}
|
|
_out << std::endl << mem;
|
|
}
|
|
}
|
|
_out << std::endl;
|
|
}
|
|
return _out;
|
|
}
|
|
|
|
template <class DB>
|
|
void commit(std::map<Address, AddressState> const& _cache, DB& _db, TrieDB<Address, DB>& _state)
|
|
{
|
|
for (auto const& i: _cache)
|
|
if (i.second.type() == AddressType::Dead)
|
|
_state.remove(i.first);
|
|
else
|
|
{
|
|
RLPStream s(i.second.type() == AddressType::Contract ? 3 : 2);
|
|
s << i.second.balance() << i.second.nonce();
|
|
if (i.second.type() == AddressType::Contract)
|
|
{
|
|
if (i.second.haveMemory())
|
|
{
|
|
TrieDB<h256, DB> memdb(&_db);
|
|
memdb.init();
|
|
for (auto const& j: i.second.memory())
|
|
if (j.second)
|
|
memdb.insert(j.first, rlp(j.second));
|
|
s << memdb.root();
|
|
}
|
|
else
|
|
s << i.second.oldRoot();
|
|
}
|
|
_state.insert(i.first, &s.out());
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|