You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

672 lines
23 KiB

#include "Arith256.h"
#include <iostream>
#include <iomanip>
#include "preprocessor/llvm_includes_start.h"
#include <llvm/IR/Module.h>
#include <llvm/IR/IntrinsicInst.h>
#include "preprocessor/llvm_includes_end.h"
#include "Type.h"
#include "Endianness.h"
#include "Utils.h"
namespace dev
{
namespace eth
{
namespace jit
{
Arith256::Arith256(llvm::IRBuilder<>& _builder) :
CompilerHelper(_builder)
{}
void Arith256::debug(llvm::Value* _value, char _c)
{
if (!m_debug)
{
llvm::Type* argTypes[] = {Type::Word, m_builder.getInt8Ty()};
m_debug = llvm::Function::Create(llvm::FunctionType::get(Type::Void, argTypes, false), llvm::Function::ExternalLinkage, "debug", getModule());
}
createCall(m_debug, {m_builder.CreateZExtOrTrunc(_value, Type::Word), m_builder.getInt8(_c)});
}
llvm::Function* Arith256::getMulFunc(llvm::Module& _module)
{
static const auto funcName = "evm.mul.i256";
if (auto func = _module.getFunction(funcName))
return func;
llvm::Type* argTypes[] = {Type::Word, Type::Word};
auto func = llvm::Function::Create(llvm::FunctionType::get(Type::Word, argTypes, false), llvm::Function::PrivateLinkage, funcName, &_module);
func->setDoesNotThrow();
func->setDoesNotAccessMemory();
auto x = &func->getArgumentList().front();
x->setName("x");
auto y = x->getNextNode();
y->setName("y");
auto bb = llvm::BasicBlock::Create(_module.getContext(), {}, func);
auto builder = llvm::IRBuilder<>{bb};
auto i64 = Type::Size;
auto i128 = builder.getIntNTy(128);
auto i256 = Type::Word;
auto c64 = Constant::get(64);
auto c128 = Constant::get(128);
auto c192 = Constant::get(192);
auto x_lo = builder.CreateTrunc(x, i64, "x.lo");
auto y_lo = builder.CreateTrunc(y, i64, "y.lo");
auto x_mi = builder.CreateTrunc(builder.CreateLShr(x, c64), i64);
auto y_mi = builder.CreateTrunc(builder.CreateLShr(y, c64), i64);
auto x_hi = builder.CreateTrunc(builder.CreateLShr(x, c128), i128);
auto y_hi = builder.CreateTrunc(builder.CreateLShr(y, c128), i128);
auto t1 = builder.CreateMul(builder.CreateZExt(x_lo, i128), builder.CreateZExt(y_lo, i128));
auto t2 = builder.CreateMul(builder.CreateZExt(x_lo, i128), builder.CreateZExt(y_mi, i128));
auto t3 = builder.CreateMul(builder.CreateZExt(x_lo, i128), y_hi);
auto t4 = builder.CreateMul(builder.CreateZExt(x_mi, i128), builder.CreateZExt(y_lo, i128));
auto t5 = builder.CreateMul(builder.CreateZExt(x_mi, i128), builder.CreateZExt(y_mi, i128));
auto t6 = builder.CreateMul(builder.CreateZExt(x_mi, i128), y_hi);
auto t7 = builder.CreateMul(x_hi, builder.CreateZExt(y_lo, i128));
auto t8 = builder.CreateMul(x_hi, builder.CreateZExt(y_mi, i128));
auto p = builder.CreateZExt(t1, i256);
p = builder.CreateAdd(p, builder.CreateShl(builder.CreateZExt(t2, i256), c64));
p = builder.CreateAdd(p, builder.CreateShl(builder.CreateZExt(t3, i256), c128));
p = builder.CreateAdd(p, builder.CreateShl(builder.CreateZExt(t4, i256), c64));
p = builder.CreateAdd(p, builder.CreateShl(builder.CreateZExt(t5, i256), c128));
p = builder.CreateAdd(p, builder.CreateShl(builder.CreateZExt(t6, i256), c192));
p = builder.CreateAdd(p, builder.CreateShl(builder.CreateZExt(t7, i256), c128));
p = builder.CreateAdd(p, builder.CreateShl(builder.CreateZExt(t8, i256), c192));
builder.CreateRet(p);
return func;
}
llvm::Function* Arith256::getUDivRem256Func(llvm::Module& _module)
{
static const auto funcName = "evm.udivrem.i256";
if (auto func = _module.getFunction(funcName))
return func;
auto type = Type::Word;
// Based of "Improved shift divisor algorithm" from "Software Integer Division" by Microsoft Research
// The following algorithm also handles divisor of value 0 returning 0 for both quotient and reminder
llvm::Type* argTypes[] = {type, type};
auto retType = llvm::VectorType::get(type, 2);
auto func = llvm::Function::Create(llvm::FunctionType::get(retType, argTypes, false), llvm::Function::PrivateLinkage, funcName, &_module);
func->setDoesNotThrow();
func->setDoesNotAccessMemory();
auto zero = llvm::ConstantInt::get(type, 0);
auto one = llvm::ConstantInt::get(type, 1);
auto x = &func->getArgumentList().front();
x->setName("x");
auto yArg = x->getNextNode();
yArg->setName("y");
auto entryBB = llvm::BasicBlock::Create(_module.getContext(), "Entry", func);
auto mainBB = llvm::BasicBlock::Create(_module.getContext(), "Main", func);
auto loopBB = llvm::BasicBlock::Create(_module.getContext(), "Loop", func);
auto continueBB = llvm::BasicBlock::Create(_module.getContext(), "Continue", func);
auto returnBB = llvm::BasicBlock::Create(_module.getContext(), "Return", func);
auto builder = llvm::IRBuilder<>{entryBB};
auto yNonZero = builder.CreateICmpNE(yArg, zero);
auto yLEx = builder.CreateICmpULE(yArg, x);
auto r0 = builder.CreateSelect(yNonZero, x, zero, "r0");
builder.CreateCondBr(builder.CreateAnd(yLEx, yNonZero), mainBB, returnBB);
builder.SetInsertPoint(mainBB);
auto ctlzIntr = llvm::Intrinsic::getDeclaration(&_module, llvm::Intrinsic::ctlz, type);
// both y and r are non-zero
auto yLz = builder.CreateCall2(ctlzIntr, yArg, builder.getInt1(true), "y.lz");
auto rLz = builder.CreateCall2(ctlzIntr, r0, builder.getInt1(true), "r.lz");
auto i0 = builder.CreateNUWSub(yLz, rLz, "i0");
auto y0 = builder.CreateShl(yArg, i0);
builder.CreateBr(loopBB);
builder.SetInsertPoint(loopBB);
auto yPhi = builder.CreatePHI(type, 2, "y.phi");
auto rPhi = builder.CreatePHI(type, 2, "r.phi");
auto iPhi = builder.CreatePHI(type, 2, "i.phi");
auto qPhi = builder.CreatePHI(type, 2, "q.phi");
auto rUpdate = builder.CreateNUWSub(rPhi, yPhi);
auto qUpdate = builder.CreateOr(qPhi, one); // q += 1, q lowest bit is 0
auto rGEy = builder.CreateICmpUGE(rPhi, yPhi);
auto r1 = builder.CreateSelect(rGEy, rUpdate, rPhi, "r1");
auto q1 = builder.CreateSelect(rGEy, qUpdate, qPhi, "q");
auto iZero = builder.CreateICmpEQ(iPhi, zero);
builder.CreateCondBr(iZero, returnBB, continueBB);
builder.SetInsertPoint(continueBB);
auto i2 = builder.CreateNUWSub(iPhi, one);
auto q2 = builder.CreateShl(q1, one);
auto y2 = builder.CreateLShr(yPhi, one);
builder.CreateBr(loopBB);
yPhi->addIncoming(y0, mainBB);
yPhi->addIncoming(y2, continueBB);
rPhi->addIncoming(r0, mainBB);
rPhi->addIncoming(r1, continueBB);
iPhi->addIncoming(i0, mainBB);
iPhi->addIncoming(i2, continueBB);
qPhi->addIncoming(zero, mainBB);
qPhi->addIncoming(q2, continueBB);
builder.SetInsertPoint(returnBB);
auto qRet = builder.CreatePHI(type, 2, "q.ret");
qRet->addIncoming(zero, entryBB);
qRet->addIncoming(q1, loopBB);
auto rRet = builder.CreatePHI(type, 2, "r.ret");
rRet->addIncoming(r0, entryBB);
rRet->addIncoming(r1, loopBB);
auto ret = builder.CreateInsertElement(llvm::UndefValue::get(retType), qRet, uint64_t(0), "ret0");
ret = builder.CreateInsertElement(ret, rRet, 1, "ret");
builder.CreateRet(ret);
return func;
}
llvm::Function* Arith256::getUDiv256Func(llvm::Module& _module)
{
static const auto funcName = "evm.udiv.i256";
if (auto func = _module.getFunction(funcName))
return func;
auto udivremFunc = getUDivRem256Func(_module);
auto func = llvm::Function::Create(llvm::FunctionType::get(Type::Word, {Type::Word, Type::Word}, false), llvm::Function::PrivateLinkage, funcName, &_module);
func->setDoesNotThrow();
func->setDoesNotAccessMemory();
auto x = &func->getArgumentList().front();
x->setName("x");
auto y = x->getNextNode();
y->setName("y");
auto bb = llvm::BasicBlock::Create(_module.getContext(), {}, func);
auto builder = llvm::IRBuilder<>{bb};
auto udivrem = builder.CreateCall(udivremFunc, {x, y});
auto udiv = builder.CreateExtractElement(udivrem, uint64_t(0));
builder.CreateRet(udiv);
return func;
}
llvm::Function* Arith256::getURem256Func(llvm::Module& _module)
{
static const auto funcName = "evm.urem.i256";
if (auto func = _module.getFunction(funcName))
return func;
auto udivremFunc = getUDivRem256Func(_module);
auto func = llvm::Function::Create(llvm::FunctionType::get(Type::Word, {Type::Word, Type::Word}, false), llvm::Function::PrivateLinkage, funcName, &_module);
func->setDoesNotThrow();
func->setDoesNotAccessMemory();
auto x = &func->getArgumentList().front();
x->setName("x");
auto y = x->getNextNode();
y->setName("y");
auto bb = llvm::BasicBlock::Create(_module.getContext(), {}, func);
auto builder = llvm::IRBuilder<>{bb};
auto udivrem = builder.CreateCall(udivremFunc, {x, y});
auto r = builder.CreateExtractElement(udivrem, uint64_t(1));
builder.CreateRet(r);
return func;
}
llvm::Function* Arith256::getSDivRem256Func(llvm::Module& _module)
{
static const auto funcName = "evm.sdivrem.i256";
if (auto func = _module.getFunction(funcName))
return func;
auto udivremFunc = getUDivRem256Func(_module);
auto retType = llvm::VectorType::get(Type::Word, 2);
auto func = llvm::Function::Create(llvm::FunctionType::get(retType, {Type::Word, Type::Word}, false), llvm::Function::PrivateLinkage, funcName, &_module);
func->setDoesNotThrow();
func->setDoesNotAccessMemory();
auto x = &func->getArgumentList().front();
x->setName("x");
auto y = x->getNextNode();
y->setName("y");
auto bb = llvm::BasicBlock::Create(_module.getContext(), "", func);
auto builder = llvm::IRBuilder<>{bb};
auto xIsNeg = builder.CreateICmpSLT(x, Constant::get(0));
auto xNeg = builder.CreateSub(Constant::get(0), x);
auto xAbs = builder.CreateSelect(xIsNeg, xNeg, x);
auto yIsNeg = builder.CreateICmpSLT(y, Constant::get(0));
auto yNeg = builder.CreateSub(Constant::get(0), y);
auto yAbs = builder.CreateSelect(yIsNeg, yNeg, y);
auto res = builder.CreateCall(udivremFunc, {xAbs, yAbs});
auto qAbs = builder.CreateExtractElement(res, uint64_t(0));
auto rAbs = builder.CreateExtractElement(res, 1);
// the reminder has the same sign as dividend
auto rNeg = builder.CreateSub(Constant::get(0), rAbs);
auto r = builder.CreateSelect(xIsNeg, rNeg, rAbs);
auto qNeg = builder.CreateSub(Constant::get(0), qAbs);
auto xyOpposite = builder.CreateXor(xIsNeg, yIsNeg);
auto q = builder.CreateSelect(xyOpposite, qNeg, qAbs);
auto ret = builder.CreateInsertElement(llvm::UndefValue::get(retType), q, uint64_t(0));
ret = builder.CreateInsertElement(ret, r, 1);
builder.CreateRet(ret);
return func;
}
llvm::Function* Arith256::getSDiv256Func(llvm::Module& _module)
{
static const auto funcName = "evm.sdiv.i256";
if (auto func = _module.getFunction(funcName))
return func;
auto sdivremFunc = getSDivRem256Func(_module);
auto func = llvm::Function::Create(llvm::FunctionType::get(Type::Word, {Type::Word, Type::Word}, false), llvm::Function::PrivateLinkage, funcName, &_module);
func->setDoesNotThrow();
func->setDoesNotAccessMemory();
auto x = &func->getArgumentList().front();
x->setName("x");
auto y = x->getNextNode();
y->setName("y");
auto bb = llvm::BasicBlock::Create(_module.getContext(), {}, func);
auto builder = llvm::IRBuilder<>{bb};
auto sdivrem = builder.CreateCall(sdivremFunc, {x, y});
auto q = builder.CreateExtractElement(sdivrem, uint64_t(0));
builder.CreateRet(q);
return func;
}
llvm::Function* Arith256::getSRem256Func(llvm::Module& _module)
{
static const auto funcName = "evm.srem.i256";
if (auto func = _module.getFunction(funcName))
return func;
auto sdivremFunc = getSDivRem256Func(_module);
auto func = llvm::Function::Create(llvm::FunctionType::get(Type::Word, {Type::Word, Type::Word}, false), llvm::Function::PrivateLinkage, funcName, &_module);
func->setDoesNotThrow();
func->setDoesNotAccessMemory();
auto x = &func->getArgumentList().front();
x->setName("x");
auto y = x->getNextNode();
y->setName("y");
auto bb = llvm::BasicBlock::Create(_module.getContext(), {}, func);
auto builder = llvm::IRBuilder<>{bb};
auto sdivrem = builder.CreateCall(sdivremFunc, {x, y});
auto r = builder.CreateExtractElement(sdivrem, uint64_t(1));
builder.CreateRet(r);
return func;
}
llvm::Function* Arith256::getMul512Func()
{
auto& func = m_mul512;
if (!func)
{
auto i512 = m_builder.getIntNTy(512);
llvm::Type* argTypes[] = {Type::Word, Type::Word};
func = llvm::Function::Create(llvm::FunctionType::get(i512, argTypes, false), llvm::Function::PrivateLinkage, "mul512", getModule());
func->setDoesNotThrow();
func->setDoesNotAccessMemory();
auto x = &func->getArgumentList().front();
x->setName("x");
auto y = x->getNextNode();
y->setName("y");
InsertPointGuard guard{m_builder};
auto bb = llvm::BasicBlock::Create(m_builder.getContext(), {}, func);
m_builder.SetInsertPoint(bb);
auto i128 = m_builder.getIntNTy(128);
auto i256 = Type::Word;
auto x_lo = m_builder.CreateZExt(m_builder.CreateTrunc(x, i128, "x.lo"), i256);
auto y_lo = m_builder.CreateZExt(m_builder.CreateTrunc(y, i128, "y.lo"), i256);
auto x_hi = m_builder.CreateZExt(m_builder.CreateTrunc(m_builder.CreateLShr(x, Constant::get(128)), i128, "x.hi"), i256);
auto y_hi = m_builder.CreateZExt(m_builder.CreateTrunc(m_builder.CreateLShr(y, Constant::get(128)), i128, "y.hi"), i256);
auto mul256Func = getMulFunc(*getModule());
auto t1 = createCall(mul256Func, {x_lo, y_lo});
auto t2 = createCall(mul256Func, {x_lo, y_hi});
auto t3 = createCall(mul256Func, {x_hi, y_lo});
auto t4 = createCall(mul256Func, {x_hi, y_hi});
auto p = m_builder.CreateZExt(t1, i512);
p = m_builder.CreateAdd(p, m_builder.CreateShl(m_builder.CreateZExt(t2, i512), m_builder.getIntN(512, 128)));
p = m_builder.CreateAdd(p, m_builder.CreateShl(m_builder.CreateZExt(t3, i512), m_builder.getIntN(512, 128)));
p = m_builder.CreateAdd(p, m_builder.CreateShl(m_builder.CreateZExt(t4, i512), m_builder.getIntN(512, 256)));
m_builder.CreateRet(p);
}
return func;
}
llvm::Function* Arith256::getDivFunc(llvm::Type* _type)
{
auto& func = _type == Type::Word ? m_div : m_div512;
if (!func)
{
// Based of "Improved shift divisor algorithm" from "Software Integer Division" by Microsoft Research
// The following algorithm also handles divisor of value 0 returning 0 for both quotient and reminder
llvm::Type* argTypes[] = {_type, _type};
auto retType = llvm::VectorType::get(_type, 2);
auto funcName = _type == Type::Word ? "div" : "div512";
func = llvm::Function::Create(llvm::FunctionType::get(retType, argTypes, false), llvm::Function::PrivateLinkage, funcName, getModule());
func->setDoesNotThrow();
func->setDoesNotAccessMemory();
auto zero = llvm::ConstantInt::get(_type, 0);
auto one = llvm::ConstantInt::get(_type, 1);
auto x = &func->getArgumentList().front();
x->setName("x");
auto yArg = x->getNextNode();
yArg->setName("y");
InsertPointGuard guard{m_builder};
auto entryBB = llvm::BasicBlock::Create(m_builder.getContext(), "Entry", func);
auto mainBB = llvm::BasicBlock::Create(m_builder.getContext(), "Main", func);
auto loopBB = llvm::BasicBlock::Create(m_builder.getContext(), "Loop", func);
auto continueBB = llvm::BasicBlock::Create(m_builder.getContext(), "Continue", func);
auto returnBB = llvm::BasicBlock::Create(m_builder.getContext(), "Return", func);
m_builder.SetInsertPoint(entryBB);
auto yNonZero = m_builder.CreateICmpNE(yArg, zero);
auto yLEx = m_builder.CreateICmpULE(yArg, x);
auto r0 = m_builder.CreateSelect(yNonZero, x, zero, "r0");
m_builder.CreateCondBr(m_builder.CreateAnd(yLEx, yNonZero), mainBB, returnBB);
m_builder.SetInsertPoint(mainBB);
auto ctlzIntr = llvm::Intrinsic::getDeclaration(getModule(), llvm::Intrinsic::ctlz, _type);
// both y and r are non-zero
auto yLz = m_builder.CreateCall2(ctlzIntr, yArg, m_builder.getInt1(true), "y.lz");
auto rLz = m_builder.CreateCall2(ctlzIntr, r0, m_builder.getInt1(true), "r.lz");
auto i0 = m_builder.CreateNUWSub(yLz, rLz, "i0");
auto y0 = m_builder.CreateShl(yArg, i0);
m_builder.CreateBr(loopBB);
m_builder.SetInsertPoint(loopBB);
auto yPhi = m_builder.CreatePHI(_type, 2, "y.phi");
auto rPhi = m_builder.CreatePHI(_type, 2, "r.phi");
auto iPhi = m_builder.CreatePHI(_type, 2, "i.phi");
auto qPhi = m_builder.CreatePHI(_type, 2, "q.phi");
auto rUpdate = m_builder.CreateNUWSub(rPhi, yPhi);
auto qUpdate = m_builder.CreateOr(qPhi, one); // q += 1, q lowest bit is 0
auto rGEy = m_builder.CreateICmpUGE(rPhi, yPhi);
auto r1 = m_builder.CreateSelect(rGEy, rUpdate, rPhi, "r1");
auto q1 = m_builder.CreateSelect(rGEy, qUpdate, qPhi, "q");
auto iZero = m_builder.CreateICmpEQ(iPhi, zero);
m_builder.CreateCondBr(iZero, returnBB, continueBB);
m_builder.SetInsertPoint(continueBB);
auto i2 = m_builder.CreateNUWSub(iPhi, one);
auto q2 = m_builder.CreateShl(q1, one);
auto y2 = m_builder.CreateLShr(yPhi, one);
m_builder.CreateBr(loopBB);
yPhi->addIncoming(y0, mainBB);
yPhi->addIncoming(y2, continueBB);
rPhi->addIncoming(r0, mainBB);
rPhi->addIncoming(r1, continueBB);
iPhi->addIncoming(i0, mainBB);
iPhi->addIncoming(i2, continueBB);
qPhi->addIncoming(zero, mainBB);
qPhi->addIncoming(q2, continueBB);
m_builder.SetInsertPoint(returnBB);
auto qRet = m_builder.CreatePHI(_type, 2, "q.ret");
qRet->addIncoming(zero, entryBB);
qRet->addIncoming(q1, loopBB);
auto rRet = m_builder.CreatePHI(_type, 2, "r.ret");
rRet->addIncoming(r0, entryBB);
rRet->addIncoming(r1, loopBB);
auto ret = m_builder.CreateInsertElement(llvm::UndefValue::get(retType), qRet, uint64_t(0), "ret0");
ret = m_builder.CreateInsertElement(ret, rRet, 1, "ret");
m_builder.CreateRet(ret);
}
return func;
}
llvm::Function* Arith256::getExpFunc()
{
if (!m_exp)
{
llvm::Type* argTypes[] = {Type::Word, Type::Word};
m_exp = llvm::Function::Create(llvm::FunctionType::get(Type::Word, argTypes, false), llvm::Function::PrivateLinkage, "exp", getModule());
m_exp->setDoesNotThrow();
m_exp->setDoesNotAccessMemory();
auto base = &m_exp->getArgumentList().front();
base->setName("base");
auto exponent = base->getNextNode();
exponent->setName("exponent");
InsertPointGuard guard{m_builder};
// while (e != 0) {
// if (e % 2 == 1)
// r *= b;
// b *= b;
// e /= 2;
// }
auto entryBB = llvm::BasicBlock::Create(m_builder.getContext(), "Entry", m_exp);
auto headerBB = llvm::BasicBlock::Create(m_builder.getContext(), "LoopHeader", m_exp);
auto bodyBB = llvm::BasicBlock::Create(m_builder.getContext(), "LoopBody", m_exp);
auto updateBB = llvm::BasicBlock::Create(m_builder.getContext(), "ResultUpdate", m_exp);
auto continueBB = llvm::BasicBlock::Create(m_builder.getContext(), "Continue", m_exp);
auto returnBB = llvm::BasicBlock::Create(m_builder.getContext(), "Return", m_exp);
m_builder.SetInsertPoint(entryBB);
m_builder.CreateBr(headerBB);
m_builder.SetInsertPoint(headerBB);
auto r = m_builder.CreatePHI(Type::Word, 2, "r");
auto b = m_builder.CreatePHI(Type::Word, 2, "b");
auto e = m_builder.CreatePHI(Type::Word, 2, "e");
auto eNonZero = m_builder.CreateICmpNE(e, Constant::get(0), "e.nonzero");
m_builder.CreateCondBr(eNonZero, bodyBB, returnBB);
m_builder.SetInsertPoint(bodyBB);
auto eOdd = m_builder.CreateICmpNE(m_builder.CreateAnd(e, Constant::get(1)), Constant::get(0), "e.isodd");
m_builder.CreateCondBr(eOdd, updateBB, continueBB);
m_builder.SetInsertPoint(updateBB);
auto mul256Func = getMulFunc(*getModule());
auto r0 = createCall(mul256Func, {r, b});
m_builder.CreateBr(continueBB);
m_builder.SetInsertPoint(continueBB);
auto r1 = m_builder.CreatePHI(Type::Word, 2, "r1");
r1->addIncoming(r, bodyBB);
r1->addIncoming(r0, updateBB);
auto b1 = createCall(mul256Func, {b, b});
auto e1 = m_builder.CreateLShr(e, Constant::get(1), "e1");
m_builder.CreateBr(headerBB);
r->addIncoming(Constant::get(1), entryBB);
r->addIncoming(r1, continueBB);
b->addIncoming(base, entryBB);
b->addIncoming(b1, continueBB);
e->addIncoming(exponent, entryBB);
e->addIncoming(e1, continueBB);
m_builder.SetInsertPoint(returnBB);
m_builder.CreateRet(r);
}
return m_exp;
}
llvm::Function* Arith256::getAddModFunc()
{
if (!m_addmod)
{
auto i512Ty = m_builder.getIntNTy(512);
llvm::Type* argTypes[] = {Type::Word, Type::Word, Type::Word};
m_addmod = llvm::Function::Create(llvm::FunctionType::get(Type::Word, argTypes, false), llvm::Function::PrivateLinkage, "addmod", getModule());
m_addmod->setDoesNotThrow();
m_addmod->setDoesNotAccessMemory();
auto x = &m_addmod->getArgumentList().front();
x->setName("x");
auto y = x->getNextNode();
y->setName("y");
auto mod = y->getNextNode();
mod->setName("m");
InsertPointGuard guard{m_builder};
auto entryBB = llvm::BasicBlock::Create(m_builder.getContext(), {}, m_addmod);
m_builder.SetInsertPoint(entryBB);
auto x512 = m_builder.CreateZExt(x, i512Ty, "x512");
auto y512 = m_builder.CreateZExt(y, i512Ty, "y512");
auto m512 = m_builder.CreateZExt(mod, i512Ty, "m512");
auto s = m_builder.CreateAdd(x512, y512, "s");
auto d = createCall(getDivFunc(i512Ty), {s, m512});
auto r = m_builder.CreateExtractElement(d, 1, "r");
m_builder.CreateRet(m_builder.CreateTrunc(r, Type::Word));
}
return m_addmod;
}
llvm::Function* Arith256::getMulModFunc()
{
if (!m_mulmod)
{
llvm::Type* argTypes[] = {Type::Word, Type::Word, Type::Word};
m_mulmod = llvm::Function::Create(llvm::FunctionType::get(Type::Word, argTypes, false), llvm::Function::PrivateLinkage, "mulmod", getModule());
m_mulmod->setDoesNotThrow();
m_mulmod->setDoesNotAccessMemory();
auto i512Ty = m_builder.getIntNTy(512);
auto x = &m_mulmod->getArgumentList().front();
x->setName("x");
auto y = x->getNextNode();
y->setName("y");
auto mod = y->getNextNode();
mod->setName("mod");
InsertPointGuard guard{m_builder};
auto entryBB = llvm::BasicBlock::Create(m_builder.getContext(), {}, m_mulmod);
m_builder.SetInsertPoint(entryBB);
auto p = createCall(getMul512Func(), {x, y});
auto m = m_builder.CreateZExt(mod, i512Ty, "m");
auto d = createCall(getDivFunc(i512Ty), {p, m});
auto r = m_builder.CreateExtractElement(d, 1, "r");
m_builder.CreateRet(m_builder.CreateTrunc(r, Type::Word));
}
return m_mulmod;
}
llvm::Value* Arith256::exp(llvm::Value* _arg1, llvm::Value* _arg2)
{
// while (e != 0) {
// if (e % 2 == 1)
// r *= b;
// b *= b;
// e /= 2;
// }
if (auto c1 = llvm::dyn_cast<llvm::ConstantInt>(_arg1))
{
if (auto c2 = llvm::dyn_cast<llvm::ConstantInt>(_arg2))
{
auto b = c1->getValue();
auto e = c2->getValue();
auto r = llvm::APInt{256, 1};
while (e != 0)
{
if (e[0])
r *= b;
b *= b;
e = e.lshr(1);
}
return Constant::get(r);
}
}
return createCall(getExpFunc(), {_arg1, _arg2});
}
llvm::Value* Arith256::addmod(llvm::Value* _arg1, llvm::Value* _arg2, llvm::Value* _arg3)
{
if (auto c1 = llvm::dyn_cast<llvm::ConstantInt>(_arg1))
{
if (auto c2 = llvm::dyn_cast<llvm::ConstantInt>(_arg2))
{
if (auto c3 = llvm::dyn_cast<llvm::ConstantInt>(_arg3))
{
if (!c3->getValue())
return Constant::get(0);
auto s = c1->getValue().zext(256+64) + c2->getValue().zext(256+64);
auto r = s.urem(c3->getValue().zext(256+64)).trunc(256);
return Constant::get(r);
}
}
}
return createCall(getAddModFunc(), {_arg1, _arg2, _arg3});
}
llvm::Value* Arith256::mulmod(llvm::Value* _arg1, llvm::Value* _arg2, llvm::Value* _arg3)
{
if (auto c1 = llvm::dyn_cast<llvm::ConstantInt>(_arg1))
{
if (auto c2 = llvm::dyn_cast<llvm::ConstantInt>(_arg2))
{
if (auto c3 = llvm::dyn_cast<llvm::ConstantInt>(_arg3))
{
if (!c3->getValue())
return Constant::get(0);
auto p = c1->getValue().zext(512) * c2->getValue().zext(512);
auto r = p.urem(c3->getValue().zext(512)).trunc(256);
return Constant::get(r);
}
}
}
return createCall(getMulModFunc(), {_arg1, _arg2, _arg3});
}
}
}
}
extern "C"
{
EXPORT void debug(uint64_t a, uint64_t b, uint64_t c, uint64_t d, char z)
{
DLOG(JIT) << "DEBUG " << std::dec << z << ": " //<< d << c << b << a
<< " [" << std::hex << std::setfill('0') << std::setw(16) << d << std::setw(16) << c << std::setw(16) << b << std::setw(16) << a << "]\n";
}
}