You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
505 lines
13 KiB
505 lines
13 KiB
/*
|
|
This file is part of cpp-ethereum.
|
|
|
|
cpp-ethereum is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
cpp-ethereum is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with cpp-ethereum. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
/**
|
|
* @author Christian <c@ethdev.com>
|
|
* @date 2014
|
|
* Solidity abstract syntax tree.
|
|
*/
|
|
|
|
#include <algorithm>
|
|
|
|
#include <libsolidity/AST.h>
|
|
#include <libsolidity/ASTVisitor.h>
|
|
#include <libsolidity/Exceptions.h>
|
|
|
|
using namespace std;
|
|
|
|
namespace dev
|
|
{
|
|
namespace solidity
|
|
{
|
|
|
|
void ContractDefinition::accept(ASTVisitor& _visitor)
|
|
{
|
|
if (_visitor.visit(*this))
|
|
{
|
|
listAccept(m_definedStructs, _visitor);
|
|
listAccept(m_stateVariables, _visitor);
|
|
listAccept(m_definedFunctions, _visitor);
|
|
}
|
|
_visitor.endVisit(*this);
|
|
}
|
|
|
|
void StructDefinition::accept(ASTVisitor& _visitor)
|
|
{
|
|
if (_visitor.visit(*this))
|
|
listAccept(m_members, _visitor);
|
|
_visitor.endVisit(*this);
|
|
}
|
|
|
|
void ParameterList::accept(ASTVisitor& _visitor)
|
|
{
|
|
if (_visitor.visit(*this))
|
|
listAccept(m_parameters, _visitor);
|
|
_visitor.endVisit(*this);
|
|
}
|
|
|
|
void FunctionDefinition::accept(ASTVisitor& _visitor)
|
|
{
|
|
if (_visitor.visit(*this))
|
|
{
|
|
m_parameters->accept(_visitor);
|
|
if (m_returnParameters)
|
|
m_returnParameters->accept(_visitor);
|
|
m_body->accept(_visitor);
|
|
}
|
|
_visitor.endVisit(*this);
|
|
}
|
|
|
|
void VariableDeclaration::accept(ASTVisitor& _visitor)
|
|
{
|
|
if (_visitor.visit(*this))
|
|
if (m_typeName)
|
|
m_typeName->accept(_visitor);
|
|
_visitor.endVisit(*this);
|
|
}
|
|
|
|
void TypeName::accept(ASTVisitor& _visitor)
|
|
{
|
|
_visitor.visit(*this);
|
|
_visitor.endVisit(*this);
|
|
}
|
|
|
|
void ElementaryTypeName::accept(ASTVisitor& _visitor)
|
|
{
|
|
_visitor.visit(*this);
|
|
_visitor.endVisit(*this);
|
|
}
|
|
|
|
void UserDefinedTypeName::accept(ASTVisitor& _visitor)
|
|
{
|
|
_visitor.visit(*this);
|
|
_visitor.endVisit(*this);
|
|
}
|
|
|
|
void Mapping::accept(ASTVisitor& _visitor)
|
|
{
|
|
if (_visitor.visit(*this))
|
|
{
|
|
m_keyType->accept(_visitor);
|
|
m_valueType->accept(_visitor);
|
|
}
|
|
_visitor.endVisit(*this);
|
|
}
|
|
|
|
void Statement::accept(ASTVisitor& _visitor)
|
|
{
|
|
_visitor.visit(*this);
|
|
_visitor.endVisit(*this);
|
|
}
|
|
|
|
void Block::accept(ASTVisitor& _visitor)
|
|
{
|
|
if (_visitor.visit(*this))
|
|
listAccept(m_statements, _visitor);
|
|
_visitor.endVisit(*this);
|
|
}
|
|
|
|
void IfStatement::accept(ASTVisitor& _visitor)
|
|
{
|
|
if (_visitor.visit(*this))
|
|
{
|
|
m_condition->accept(_visitor);
|
|
m_trueBody->accept(_visitor);
|
|
if (m_falseBody)
|
|
m_falseBody->accept(_visitor);
|
|
}
|
|
_visitor.endVisit(*this);
|
|
}
|
|
|
|
void BreakableStatement::accept(ASTVisitor& _visitor)
|
|
{
|
|
_visitor.visit(*this);
|
|
_visitor.endVisit(*this);
|
|
}
|
|
|
|
void WhileStatement::accept(ASTVisitor& _visitor)
|
|
{
|
|
if (_visitor.visit(*this))
|
|
{
|
|
m_condition->accept(_visitor);
|
|
m_body->accept(_visitor);
|
|
}
|
|
_visitor.endVisit(*this);
|
|
}
|
|
|
|
void Continue::accept(ASTVisitor& _visitor)
|
|
{
|
|
_visitor.visit(*this);
|
|
_visitor.endVisit(*this);
|
|
}
|
|
|
|
void Break::accept(ASTVisitor& _visitor)
|
|
{
|
|
_visitor.visit(*this);
|
|
_visitor.endVisit(*this);
|
|
}
|
|
|
|
void Return::accept(ASTVisitor& _visitor)
|
|
{
|
|
if (_visitor.visit(*this))
|
|
if (m_expression)
|
|
m_expression->accept(_visitor);
|
|
_visitor.endVisit(*this);
|
|
}
|
|
|
|
void ExpressionStatement::accept(ASTVisitor& _visitor)
|
|
{
|
|
if (_visitor.visit(*this))
|
|
if (m_expression)
|
|
m_expression->accept(_visitor);
|
|
_visitor.endVisit(*this);
|
|
}
|
|
|
|
void VariableDefinition::accept(ASTVisitor& _visitor)
|
|
{
|
|
if (_visitor.visit(*this))
|
|
{
|
|
m_variable->accept(_visitor);
|
|
if (m_value)
|
|
m_value->accept(_visitor);
|
|
}
|
|
_visitor.endVisit(*this);
|
|
}
|
|
|
|
void Assignment::accept(ASTVisitor& _visitor)
|
|
{
|
|
if (_visitor.visit(*this))
|
|
{
|
|
m_leftHandSide->accept(_visitor);
|
|
m_rightHandSide->accept(_visitor);
|
|
}
|
|
_visitor.endVisit(*this);
|
|
}
|
|
|
|
void UnaryOperation::accept(ASTVisitor& _visitor)
|
|
{
|
|
if (_visitor.visit(*this))
|
|
m_subExpression->accept(_visitor);
|
|
_visitor.endVisit(*this);
|
|
}
|
|
|
|
void BinaryOperation::accept(ASTVisitor& _visitor)
|
|
{
|
|
if (_visitor.visit(*this))
|
|
{
|
|
m_left->accept(_visitor);
|
|
m_right->accept(_visitor);
|
|
}
|
|
_visitor.endVisit(*this);
|
|
}
|
|
|
|
void FunctionCall::accept(ASTVisitor& _visitor)
|
|
{
|
|
if (_visitor.visit(*this))
|
|
{
|
|
m_expression->accept(_visitor);
|
|
listAccept(m_arguments, _visitor);
|
|
}
|
|
_visitor.endVisit(*this);
|
|
}
|
|
|
|
void MemberAccess::accept(ASTVisitor& _visitor)
|
|
{
|
|
if (_visitor.visit(*this))
|
|
m_expression->accept(_visitor);
|
|
_visitor.endVisit(*this);
|
|
}
|
|
|
|
void IndexAccess::accept(ASTVisitor& _visitor)
|
|
{
|
|
if (_visitor.visit(*this))
|
|
{
|
|
m_base->accept(_visitor);
|
|
m_index->accept(_visitor);
|
|
}
|
|
_visitor.endVisit(*this);
|
|
}
|
|
|
|
void Identifier::accept(ASTVisitor& _visitor)
|
|
{
|
|
_visitor.visit(*this);
|
|
_visitor.endVisit(*this);
|
|
}
|
|
|
|
void ElementaryTypeNameExpression::accept(ASTVisitor& _visitor)
|
|
{
|
|
_visitor.visit(*this);
|
|
_visitor.endVisit(*this);
|
|
}
|
|
|
|
void Literal::accept(ASTVisitor& _visitor)
|
|
{
|
|
_visitor.visit(*this);
|
|
_visitor.endVisit(*this);
|
|
}
|
|
|
|
TypeError ASTNode::createTypeError(string const& _description)
|
|
{
|
|
return TypeError() << errinfo_sourceLocation(getLocation()) << errinfo_comment(_description);
|
|
}
|
|
|
|
void Block::checkTypeRequirements()
|
|
{
|
|
for (shared_ptr<Statement> const& statement: m_statements)
|
|
statement->checkTypeRequirements();
|
|
}
|
|
|
|
void IfStatement::checkTypeRequirements()
|
|
{
|
|
m_condition->expectType(BoolType());
|
|
m_trueBody->checkTypeRequirements();
|
|
if (m_falseBody)
|
|
m_falseBody->checkTypeRequirements();
|
|
}
|
|
|
|
void WhileStatement::checkTypeRequirements()
|
|
{
|
|
m_condition->expectType(BoolType());
|
|
m_body->checkTypeRequirements();
|
|
}
|
|
|
|
void Continue::checkTypeRequirements()
|
|
{
|
|
}
|
|
|
|
void Break::checkTypeRequirements()
|
|
{
|
|
}
|
|
|
|
void Return::checkTypeRequirements()
|
|
{
|
|
if (!m_expression)
|
|
return;
|
|
if (asserts(m_returnParameters))
|
|
BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Return parameters not assigned."));
|
|
if (m_returnParameters->getParameters().size() != 1)
|
|
BOOST_THROW_EXCEPTION(createTypeError("Different number of arguments in return statement "
|
|
"than in returns declaration."));
|
|
// this could later be changed such that the paramaters type is an anonymous struct type,
|
|
// but for now, we only allow one return parameter
|
|
m_expression->expectType(*m_returnParameters->getParameters().front()->getType());
|
|
}
|
|
|
|
void VariableDefinition::checkTypeRequirements()
|
|
{
|
|
// Variables can be declared without type (with "var"), in which case the first assignment
|
|
// setsthe type.
|
|
// Note that assignments before the first declaration are legal because of the special scoping
|
|
// rules inherited from JavaScript.
|
|
if (m_value)
|
|
{
|
|
if (m_variable->getType())
|
|
m_value->expectType(*m_variable->getType());
|
|
else
|
|
{
|
|
// no type declared and no previous assignment, infer the type
|
|
m_value->checkTypeRequirements();
|
|
m_variable->setType(m_value->getType());
|
|
}
|
|
}
|
|
}
|
|
|
|
void Assignment::checkTypeRequirements()
|
|
{
|
|
//@todo lefthandside actually has to be assignable
|
|
// add a feature to the type system to check that
|
|
m_leftHandSide->checkTypeRequirements();
|
|
if (!m_leftHandSide->isLvalue())
|
|
BOOST_THROW_EXCEPTION(createTypeError("Expression has to be an lvalue."));
|
|
m_rightHandSide->expectType(*m_leftHandSide->getType());
|
|
m_type = m_leftHandSide->getType();
|
|
if (m_assigmentOperator != Token::ASSIGN)
|
|
// compound assignment
|
|
if (!m_type->acceptsBinaryOperator(Token::AssignmentToBinaryOp(m_assigmentOperator)))
|
|
BOOST_THROW_EXCEPTION(createTypeError("Operator not compatible with type."));
|
|
}
|
|
|
|
void ExpressionStatement::checkTypeRequirements()
|
|
{
|
|
m_expression->checkTypeRequirements();
|
|
}
|
|
|
|
void Expression::expectType(Type const& _expectedType)
|
|
{
|
|
checkTypeRequirements();
|
|
if (!getType()->isImplicitlyConvertibleTo(_expectedType))
|
|
BOOST_THROW_EXCEPTION(createTypeError("Type not implicitly convertible to expected type."));
|
|
//@todo provide more information to the exception
|
|
}
|
|
|
|
void UnaryOperation::checkTypeRequirements()
|
|
{
|
|
// INC, DEC, ADD, SUB, NOT, BIT_NOT, DELETE
|
|
m_subExpression->checkTypeRequirements();
|
|
if (m_operator == Token::Value::INC || m_operator == Token::Value::DEC || m_operator == Token::Value::DELETE)
|
|
if (!m_subExpression->isLvalue())
|
|
BOOST_THROW_EXCEPTION(createTypeError("Expression has to be an lvalue."));
|
|
m_type = m_subExpression->getType();
|
|
if (!m_type->acceptsUnaryOperator(m_operator))
|
|
BOOST_THROW_EXCEPTION(createTypeError("Unary operator not compatible with type."));
|
|
}
|
|
|
|
void BinaryOperation::checkTypeRequirements()
|
|
{
|
|
m_right->checkTypeRequirements();
|
|
m_left->checkTypeRequirements();
|
|
if (m_right->getType()->isImplicitlyConvertibleTo(*m_left->getType()))
|
|
m_commonType = m_left->getType();
|
|
else if (m_left->getType()->isImplicitlyConvertibleTo(*m_right->getType()))
|
|
m_commonType = m_right->getType();
|
|
else
|
|
BOOST_THROW_EXCEPTION(createTypeError("No common type found in binary operation."));
|
|
if (Token::isCompareOp(m_operator))
|
|
m_type = make_shared<BoolType>();
|
|
else
|
|
{
|
|
m_type = m_commonType;
|
|
if (!m_commonType->acceptsBinaryOperator(m_operator))
|
|
BOOST_THROW_EXCEPTION(createTypeError("Operator not compatible with type."));
|
|
}
|
|
}
|
|
|
|
void FunctionCall::checkTypeRequirements()
|
|
{
|
|
m_expression->checkTypeRequirements();
|
|
for (ASTPointer<Expression> const& argument: m_arguments)
|
|
argument->checkTypeRequirements();
|
|
|
|
Type const* expressionType = m_expression->getType().get();
|
|
if (isTypeConversion())
|
|
{
|
|
TypeType const& type = dynamic_cast<TypeType const&>(*expressionType);
|
|
//@todo for structs, we have to check the number of arguments to be equal to the
|
|
// number of non-mapping members
|
|
if (m_arguments.size() != 1)
|
|
BOOST_THROW_EXCEPTION(createTypeError("More than one argument for "
|
|
"explicit type conersion."));
|
|
if (!m_arguments.front()->getType()->isExplicitlyConvertibleTo(*type.getActualType()))
|
|
BOOST_THROW_EXCEPTION(createTypeError("Explicit type conversion not allowed."));
|
|
m_type = type.getActualType();
|
|
}
|
|
else
|
|
{
|
|
//@todo would be nice to create a struct type from the arguments
|
|
// and then ask if that is implicitly convertible to the struct represented by the
|
|
// function parameters
|
|
FunctionDefinition const& fun = dynamic_cast<FunctionType const&>(*expressionType).getFunction();
|
|
vector<ASTPointer<VariableDeclaration>> const& parameters = fun.getParameters();
|
|
if (parameters.size() != m_arguments.size())
|
|
BOOST_THROW_EXCEPTION(createTypeError("Wrong argument count for function call."));
|
|
for (size_t i = 0; i < m_arguments.size(); ++i)
|
|
if (!m_arguments[i]->getType()->isImplicitlyConvertibleTo(*parameters[i]->getType()))
|
|
BOOST_THROW_EXCEPTION(createTypeError("Invalid type for argument in function call."));
|
|
// @todo actually the return type should be an anonymous struct,
|
|
// but we change it to the type of the first return value until we have structs
|
|
if (fun.getReturnParameters().empty())
|
|
m_type = make_shared<VoidType>();
|
|
else
|
|
m_type = fun.getReturnParameters().front()->getType();
|
|
}
|
|
}
|
|
|
|
bool FunctionCall::isTypeConversion() const
|
|
{
|
|
return m_expression->getType()->getCategory() == Type::Category::TYPE;
|
|
}
|
|
|
|
void MemberAccess::checkTypeRequirements()
|
|
{
|
|
BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Member access not yet implemented."));
|
|
// m_type = ;
|
|
}
|
|
|
|
void IndexAccess::checkTypeRequirements()
|
|
{
|
|
BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Index access not yet implemented."));
|
|
// m_type = ;
|
|
}
|
|
|
|
void Identifier::checkTypeRequirements()
|
|
{
|
|
if (asserts(m_referencedDeclaration))
|
|
BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Identifier not resolved."));
|
|
|
|
//@todo these dynamic casts here are not really nice...
|
|
// is i useful to have an AST visitor here?
|
|
// or can this already be done in NameAndTypeResolver?
|
|
// the only problem we get there is that in
|
|
// var x;
|
|
// x = 2;
|
|
// var y = x;
|
|
// the type of x is not yet determined.
|
|
VariableDeclaration* variable = dynamic_cast<VariableDeclaration*>(m_referencedDeclaration);
|
|
if (variable)
|
|
{
|
|
if (!variable->getType())
|
|
BOOST_THROW_EXCEPTION(createTypeError("Variable referenced before type could be determined."));
|
|
m_type = variable->getType();
|
|
m_isLvalue = true;
|
|
return;
|
|
}
|
|
//@todo can we unify these with TypeName::toType()?
|
|
StructDefinition* structDef = dynamic_cast<StructDefinition*>(m_referencedDeclaration);
|
|
if (structDef)
|
|
{
|
|
// note that we do not have a struct type here
|
|
m_type = make_shared<TypeType>(make_shared<StructType>(*structDef));
|
|
return;
|
|
}
|
|
FunctionDefinition* functionDef = dynamic_cast<FunctionDefinition*>(m_referencedDeclaration);
|
|
if (functionDef)
|
|
{
|
|
// a function reference is not a TypeType, because calling a TypeType converts to the type.
|
|
// Calling a function (e.g. function(12), otherContract.function(34)) does not do a type
|
|
// conversion.
|
|
m_type = make_shared<FunctionType>(*functionDef);
|
|
return;
|
|
}
|
|
ContractDefinition* contractDef = dynamic_cast<ContractDefinition*>(m_referencedDeclaration);
|
|
if (contractDef)
|
|
{
|
|
m_type = make_shared<TypeType>(make_shared<ContractType>(*contractDef));
|
|
return;
|
|
}
|
|
BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Declaration reference of unknown/forbidden type."));
|
|
}
|
|
|
|
void ElementaryTypeNameExpression::checkTypeRequirements()
|
|
{
|
|
m_type = make_shared<TypeType>(Type::fromElementaryTypeName(m_typeToken));
|
|
}
|
|
|
|
void Literal::checkTypeRequirements()
|
|
{
|
|
m_type = Type::forLiteral(*this);
|
|
if (!m_type)
|
|
BOOST_THROW_EXCEPTION(createTypeError("Literal value too large."));
|
|
}
|
|
|
|
}
|
|
}
|
|
|