You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

664 lines
15 KiB

#include "Compiler.h"
#include <llvm/IR/IRBuilder.h>
#include <libevmface/Instruction.h>
#include "Memory.h"
#include "Stack.h"
#include "Ext.h"
namespace evmcc
{
struct
{
llvm::Type* word8;
llvm::Type* word8ptr;
llvm::Type* word256;
llvm::Type* word256ptr;
llvm::Type* word256arr;
llvm::Type* size;
llvm::Type* Void;
llvm::Type* WordLowPrecision;
} Types;
Compiler::Compiler()
{
auto& context = llvm::getGlobalContext();
Types.word8 = llvm::Type::getInt8Ty(context);
Types.word8ptr = llvm::Type::getInt8PtrTy(context);
Types.word256 = llvm::Type::getIntNTy(context, 256);
Types.word256ptr = Types.word256->getPointerTo();
Types.word256arr = llvm::ArrayType::get(Types.word256, 100);
Types.size = llvm::Type::getInt64Ty(context);
Types.Void = llvm::Type::getVoidTy(context);
// TODO: Use 64-bit for now. In 128-bit compiler-rt library functions are required
Types.WordLowPrecision = llvm::Type::getIntNTy(context, 64);
}
llvm::BasicBlock* Compiler::getOrCreateBasicBlockAtPC(ProgramCounter pc)
{
llvm::BasicBlock* block = nullptr;
auto blockIter = basicBlocks.find(pc);
if (blockIter == basicBlocks.cend())
{
// Create a basic block at targetPC.
std::ostringstream oss;
oss << "instr." << pc;
block = llvm::BasicBlock::Create(llvm::getGlobalContext(), oss.str());
basicBlocks[pc] = block;
}
else
{
block = blockIter->second;
}
return block;
}
void Compiler::createBasicBlocks(const dev::bytes& bytecode)
{
getOrCreateBasicBlockAtPC(0);
for (auto curr = bytecode.cbegin(); curr != bytecode.cend(); ++curr)
{
using dev::eth::Instruction;
auto inst = static_cast<Instruction>(*curr);
switch (inst)
{
case Instruction::PUSH1:
case Instruction::PUSH2:
case Instruction::PUSH3:
case Instruction::PUSH4:
case Instruction::PUSH5:
case Instruction::PUSH6:
case Instruction::PUSH7:
case Instruction::PUSH8:
case Instruction::PUSH9:
case Instruction::PUSH10:
case Instruction::PUSH11:
case Instruction::PUSH12:
case Instruction::PUSH13:
case Instruction::PUSH14:
case Instruction::PUSH15:
case Instruction::PUSH16:
case Instruction::PUSH17:
case Instruction::PUSH18:
case Instruction::PUSH19:
case Instruction::PUSH20:
case Instruction::PUSH21:
case Instruction::PUSH22:
case Instruction::PUSH23:
case Instruction::PUSH24:
case Instruction::PUSH25:
case Instruction::PUSH26:
case Instruction::PUSH27:
case Instruction::PUSH28:
case Instruction::PUSH29:
case Instruction::PUSH30:
case Instruction::PUSH31:
case Instruction::PUSH32:
{
auto numBytes = static_cast<size_t>(inst) - static_cast<size_t>(Instruction::PUSH1) + 1;
auto next = curr + numBytes + 1;
if (next == bytecode.cend())
break;
auto nextInst = static_cast<Instruction>(*next);
if (nextInst == Instruction::JUMP || nextInst == Instruction::JUMPI)
{
// Compute target PC of the jump.
dev::u256 val = 0;
for (auto iter = curr + 1; iter < next; ++iter)
{
val <<= 8;
val |= *iter;
}
// Create a block for the JUMP target.
ProgramCounter targetPC = val.convert_to<ProgramCounter>();
auto targetBlock = getOrCreateBasicBlockAtPC(targetPC);
ProgramCounter jumpPC = (next - bytecode.cbegin());
jumpTargets[jumpPC] = targetBlock;
// Create a block following the JUMP.
if (next + 1 < bytecode.cend())
{
ProgramCounter nextPC = (next + 1 - bytecode.cbegin());
getOrCreateBasicBlockAtPC(nextPC);
}
curr += 1; // skip over JUMP
}
curr += numBytes;
break;
}
case Instruction::JUMP:
case Instruction::JUMPI:
{
std::cerr << "JUMP/JUMPI at " << (curr - bytecode.cbegin()) << " not preceded by PUSH\n";
std::exit(1);
}
default:
break;
}
}
}
std::unique_ptr<llvm::Module> Compiler::compile(const dev::bytes& bytecode)
{
using namespace llvm;
auto& context = getGlobalContext();
auto module = std::make_unique<Module>("main", context);
IRBuilder<> builder(context);
// Create main function
const auto i32Ty = builder.getInt32Ty();
Type* retTypeElems[] = {i32Ty, i32Ty};
auto retType = StructType::create(retTypeElems, "MemRef", true);
auto mainFuncType = FunctionType::get(builder.getInt64Ty(), false);
auto mainFunc = Function::Create(mainFuncType, Function::ExternalLinkage, "main", module.get());
// Create the basic blocks.
auto entryBlock = BasicBlock::Create(context, "entry", mainFunc);
builder.SetInsertPoint(entryBlock);
createBasicBlocks(bytecode);
// Init runtime structures.
auto stack = Stack(builder, module.get());
auto memory = Memory(builder, module.get());
auto ext = Ext(builder, module.get());
auto userRet = false;
auto finished = false;
BasicBlock* currentBlock = entryBlock;
for (auto pc = bytecode.cbegin(); pc != bytecode.cend() && !finished; ++pc)
{
using dev::eth::Instruction;
ProgramCounter currentPC = pc - bytecode.cbegin();
auto blockIter = basicBlocks.find(currentPC);
if (blockIter != basicBlocks.end())
{
auto nextBlock = blockIter->second;
// Terminate the current block by jumping to the next one.
if (currentBlock != nullptr)
builder.CreateBr(nextBlock);
// Insert the next block into the main function.
mainFunc->getBasicBlockList().push_back(nextBlock);
builder.SetInsertPoint(nextBlock);
currentBlock = nextBlock;
}
assert(currentBlock != nullptr);
auto inst = static_cast<Instruction>(*pc);
switch (inst)
{
case Instruction::ADD:
{
auto lhs = stack.pop();
auto rhs = stack.pop();
auto result = builder.CreateAdd(lhs, rhs);
stack.push(result);
break;
}
case Instruction::SUB:
{
auto lhs = stack.pop();
auto rhs = stack.pop();
auto result = builder.CreateSub(lhs, rhs);
stack.push(result);
break;
}
case Instruction::MUL:
{
auto lhs256 = stack.pop();
auto rhs256 = stack.pop();
auto lhs128 = builder.CreateTrunc(lhs256, Types.WordLowPrecision);
auto rhs128 = builder.CreateTrunc(rhs256, Types.WordLowPrecision);
auto res128 = builder.CreateMul(lhs128, rhs128);
auto res256 = builder.CreateZExt(res128, Types.word256);
stack.push(res256);
break;
}
case Instruction::DIV:
{
auto lhs256 = stack.pop();
auto rhs256 = stack.pop();
auto lhs128 = builder.CreateTrunc(lhs256, Types.WordLowPrecision);
auto rhs128 = builder.CreateTrunc(rhs256, Types.WordLowPrecision);
auto res128 = builder.CreateUDiv(lhs128, rhs128);
auto res256 = builder.CreateZExt(res128, Types.word256);
stack.push(res256);
break;
}
case Instruction::SDIV:
{
auto lhs256 = stack.pop();
auto rhs256 = stack.pop();
auto lhs128 = builder.CreateTrunc(lhs256, Types.WordLowPrecision);
auto rhs128 = builder.CreateTrunc(rhs256, Types.WordLowPrecision);
auto res128 = builder.CreateSDiv(lhs128, rhs128);
auto res256 = builder.CreateSExt(res128, Types.word256);
stack.push(res256);
break;
}
case Instruction::MOD:
{
auto lhs256 = stack.pop();
auto rhs256 = stack.pop();
auto lhs128 = builder.CreateTrunc(lhs256, Types.WordLowPrecision);
auto rhs128 = builder.CreateTrunc(rhs256, Types.WordLowPrecision);
auto res128 = builder.CreateURem(lhs128, rhs128);
auto res256 = builder.CreateZExt(res128, Types.word256);
stack.push(res256);
break;
}
case Instruction::SMOD:
{
auto lhs256 = stack.pop();
auto rhs256 = stack.pop();
auto lhs128 = builder.CreateTrunc(lhs256, Types.WordLowPrecision);
auto rhs128 = builder.CreateTrunc(rhs256, Types.WordLowPrecision);
auto res128 = builder.CreateSRem(lhs128, rhs128);
auto res256 = builder.CreateSExt(res128, Types.word256);
stack.push(res256);
break;
}
case Instruction::LT:
{
auto lhs = stack.pop();
auto rhs = stack.pop();
auto res1 = builder.CreateICmpULT(lhs, rhs);
auto res256 = builder.CreateZExt(res1, Types.word256);
stack.push(res256);
break;
}
case Instruction::GT:
{
auto lhs = stack.pop();
auto rhs = stack.pop();
auto res1 = builder.CreateICmpUGT(lhs, rhs);
auto res256 = builder.CreateZExt(res1, Types.word256);
stack.push(res256);
break;
}
case Instruction::NOT:
{
auto top = stack.pop();
auto zero = ConstantInt::get(Types.word256, 0);
auto iszero = builder.CreateICmpEQ(top, zero, "iszero");
auto result = builder.CreateZExt(iszero, Types.word256);
stack.push(result);
break;
}
case Instruction::POP:
{
stack.pop();
break;
}
case Instruction::PUSH1:
case Instruction::PUSH2:
case Instruction::PUSH3:
case Instruction::PUSH4:
case Instruction::PUSH5:
case Instruction::PUSH6:
case Instruction::PUSH7:
case Instruction::PUSH8:
case Instruction::PUSH9:
case Instruction::PUSH10:
case Instruction::PUSH11:
case Instruction::PUSH12:
case Instruction::PUSH13:
case Instruction::PUSH14:
case Instruction::PUSH15:
case Instruction::PUSH16:
case Instruction::PUSH17:
case Instruction::PUSH18:
case Instruction::PUSH19:
case Instruction::PUSH20:
case Instruction::PUSH21:
case Instruction::PUSH22:
case Instruction::PUSH23:
case Instruction::PUSH24:
case Instruction::PUSH25:
case Instruction::PUSH26:
case Instruction::PUSH27:
case Instruction::PUSH28:
case Instruction::PUSH29:
case Instruction::PUSH30:
case Instruction::PUSH31:
case Instruction::PUSH32:
{
auto numBytes = static_cast<size_t>(inst) - static_cast<size_t>(Instruction::PUSH1) + 1;
auto value = llvm::APInt(256, 0);
for (decltype(numBytes) i = 0; i < numBytes; ++i) // TODO: Use pc as iterator
{
++pc;
value <<= 8;
value |= *pc;
}
auto c = builder.getInt(value);
stack.push(c);
break;
}
case Instruction::DUP1:
case Instruction::DUP2:
case Instruction::DUP3:
case Instruction::DUP4:
case Instruction::DUP5:
case Instruction::DUP6:
case Instruction::DUP7:
case Instruction::DUP8:
case Instruction::DUP9:
case Instruction::DUP10:
case Instruction::DUP11:
case Instruction::DUP12:
case Instruction::DUP13:
case Instruction::DUP14:
case Instruction::DUP15:
case Instruction::DUP16:
{
auto index = static_cast<uint32_t>(inst) - static_cast<uint32_t>(Instruction::DUP1);
auto value = stack.get(index);
stack.push(value);
break;
}
case Instruction::SWAP1:
case Instruction::SWAP2:
case Instruction::SWAP3:
case Instruction::SWAP4:
case Instruction::SWAP5:
case Instruction::SWAP6:
case Instruction::SWAP7:
case Instruction::SWAP8:
case Instruction::SWAP9:
case Instruction::SWAP10:
case Instruction::SWAP11:
case Instruction::SWAP12:
case Instruction::SWAP13:
case Instruction::SWAP14:
case Instruction::SWAP15:
case Instruction::SWAP16:
{
auto index = static_cast<uint32_t>(inst) - static_cast<uint32_t>(Instruction::SWAP1) + 1;
auto loValue = stack.get(index);
auto hiValue = stack.get(0);
stack.set(index, hiValue);
stack.set(0, loValue);
break;
}
case Instruction::MLOAD:
{
auto addr = stack.pop();
auto word = memory.loadWord(addr);
stack.push(word);
break;
}
case Instruction::MSTORE:
{
auto addr = stack.pop();
auto word = stack.pop();
memory.storeWord(addr, word);
break;
}
case Instruction::MSTORE8:
{
auto addr = stack.pop();
auto word = stack.pop();
memory.storeByte(addr, word);
break;
}
case Instruction::MSIZE:
{
auto word = memory.getSize();
stack.push(word);
break;
}
case Instruction::SLOAD:
{
auto index = stack.pop();
auto value = ext.store(index);
stack.push(value);
break;
}
case Instruction::SSTORE:
{
auto index = stack.pop();
auto value = stack.pop();
ext.setStore(index, value);
break;
}
case Instruction::JUMP:
{
// The target address is computed at compile time,
// just pop it without looking...
stack.pop();
auto targetBlock = jumpTargets[currentPC];
builder.CreateBr(targetBlock);
currentBlock = nullptr;
break;
}
case Instruction::JUMPI:
{
assert(pc + 1 < bytecode.cend());
// The target address is computed at compile time,
// just pop it without looking...
stack.pop();
auto top = stack.pop();
auto zero = ConstantInt::get(Types.word256, 0);
auto cond = builder.CreateICmpNE(top, zero, "nonzero");
auto targetBlock = jumpTargets[currentPC];
auto followBlock = basicBlocks[currentPC + 1];
builder.CreateCondBr(cond, targetBlock, followBlock);
currentBlock = nullptr;
break;
}
case Instruction::PC:
{
auto value = builder.getIntN(256, currentPC);
stack.push(value);
break;
}
case Instruction::ADDRESS:
{
auto value = ext.address();
stack.push(value);
break;
}
case Instruction::BALANCE:
{
auto address = stack.pop();
auto value = ext.balance(address);
stack.push(value);
break;
}
case Instruction::CALLER:
{
auto value = ext.caller();
stack.push(value);
break;
}
case Instruction::ORIGIN:
{
auto value = ext.origin();
stack.push(value);
break;
}
case Instruction::CALLVALUE:
{
auto value = ext.callvalue();
stack.push(value);
break;
}
case Instruction::CALLDATASIZE:
{
auto value = ext.calldatasize();
stack.push(value);
break;
}
case Instruction::CALLDATALOAD:
{
auto index = stack.pop();
auto value = ext.calldataload(index);
stack.push(value);
break;
}
case Instruction::GASPRICE:
{
auto value = ext.gasprice();
stack.push(value);
break;
}
case Instruction::CODESIZE:
{
auto value = builder.getIntN(256, bytecode.size());
stack.push(value);
break;
}
case Instruction::PREVHASH:
{
auto value = ext.prevhash();
stack.push(value);
break;
}
case Instruction::COINBASE:
{
auto value = ext.coinbase();
stack.push(value);
break;
}
case Instruction::TIMESTAMP:
{
auto value = ext.timestamp();
stack.push(value);
break;
}
case Instruction::NUMBER:
{
auto value = ext.number();
stack.push(value);
break;
}
case Instruction::DIFFICULTY:
{
auto value = ext.difficulty();
stack.push(value);
break;
}
case Instruction::GASLIMIT:
{
auto value = ext.gaslimit();
stack.push(value);
break;
}
case Instruction::RETURN:
{
auto index = stack.pop();
auto size = stack.pop();
// MCJIT does not support returning structs
//auto index32 = builder.CreateTrunc(index, i32Ty, "index32");
//auto size32 = builder.CreateTrunc(size, i32Ty, "size32");
//auto ret = builder.CreateInsertValue(UndefValue::get(retType), index32, 0, "ret");
//ret = builder.CreateInsertValue(ret, size32, 1, "ret");
auto ret = builder.CreateTrunc(index, builder.getInt64Ty());
ret = builder.CreateShl(ret, 32);
size = builder.CreateTrunc(size, i32Ty);
size = builder.CreateZExt(size, builder.getInt64Ty());
ret = builder.CreateOr(ret, size);
builder.CreateRet(ret);
finished = true;
userRet = true;
break;
}
case Instruction::STOP:
{
finished = true;
break;
}
}
}
// Generate final basic block (may be jumped to).
auto finalPC = bytecode.size();
auto it = basicBlocks.find(finalPC);
if (it != basicBlocks.end())
{
auto finalBlock = it->second;
if (currentBlock != nullptr)
builder.CreateBr(finalBlock);
mainFunc->getBasicBlockList().push_back(finalBlock);
builder.SetInsertPoint(finalBlock);
}
if (!userRet)
builder.CreateRet(builder.getInt64(0));
return module;
}
}