You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

383 lines
12 KiB

#include "Arith256.h"
#include "Runtime.h"
#include "Type.h"
#include "Endianness.h"
#include <llvm/IR/Function.h>
#include <llvm/IR/IntrinsicInst.h>
#include <gmp.h>
namespace dev
{
namespace eth
{
namespace jit
{
Arith256::Arith256(llvm::IRBuilder<>& _builder) :
CompilerHelper(_builder)
{
using namespace llvm;
m_result = m_builder.CreateAlloca(Type::Word, nullptr, "arith.result");
m_arg1 = m_builder.CreateAlloca(Type::Word, nullptr, "arith.arg1");
m_arg2 = m_builder.CreateAlloca(Type::Word, nullptr, "arith.arg2");
m_arg3 = m_builder.CreateAlloca(Type::Word, nullptr, "arith.arg3");
using Linkage = GlobalValue::LinkageTypes;
llvm::Type* arg2Types[] = {Type::WordPtr, Type::WordPtr, Type::WordPtr};
llvm::Type* arg3Types[] = {Type::WordPtr, Type::WordPtr, Type::WordPtr, Type::WordPtr};
m_mul = Function::Create(FunctionType::get(Type::Void, arg2Types, false), Linkage::ExternalLinkage, "arith_mul", getModule());
m_div = Function::Create(FunctionType::get(Type::Void, arg2Types, false), Linkage::ExternalLinkage, "arith_div", getModule());
m_mod = Function::Create(FunctionType::get(Type::Void, arg2Types, false), Linkage::ExternalLinkage, "arith_mod", getModule());
m_sdiv = Function::Create(FunctionType::get(Type::Void, arg2Types, false), Linkage::ExternalLinkage, "arith_sdiv", getModule());
m_smod = Function::Create(FunctionType::get(Type::Void, arg2Types, false), Linkage::ExternalLinkage, "arith_smod", getModule());
m_exp = Function::Create(FunctionType::get(Type::Void, arg2Types, false), Linkage::ExternalLinkage, "arith_exp", getModule());
m_addmod = Function::Create(FunctionType::get(Type::Void, arg3Types, false), Linkage::ExternalLinkage, "arith_addmod", getModule());
m_mulmod = Function::Create(FunctionType::get(Type::Void, arg3Types, false), Linkage::ExternalLinkage, "arith_mulmod", getModule());
}
llvm::Function* Arith256::getDivFunc()
{
if (!m_newDiv)
{
// Based of "Improved shift divisor algorithm" from "Software Integer Division" by Microsoft Research
// The following algorithm also handles divisor of value 0 returning 0 for both quotient and reminder
llvm::Type* argTypes[] = {Type::Word, Type::Word};
auto retType = llvm::StructType::get(m_builder.getContext(), llvm::ArrayRef<llvm::Type*>{argTypes});
m_newDiv = llvm::Function::Create(llvm::FunctionType::get(retType, argTypes, false), llvm::Function::PrivateLinkage, "arith.div", getModule());
auto x = &m_newDiv->getArgumentList().front();
x->setName("x");
auto yArg = x->getNextNode();
yArg->setName("y");
InsertPointGuard guard{m_builder};
auto entryBB = llvm::BasicBlock::Create(m_builder.getContext(), "Entry", m_newDiv);
auto mainBB = llvm::BasicBlock::Create(m_builder.getContext(), "Main", m_newDiv);
auto loopBB = llvm::BasicBlock::Create(m_builder.getContext(), "Loop", m_newDiv);
auto continueBB = llvm::BasicBlock::Create(m_builder.getContext(), "Continue", m_newDiv);
auto returnBB = llvm::BasicBlock::Create(m_builder.getContext(), "Return", m_newDiv);
m_builder.SetInsertPoint(entryBB);
auto yNonZero = m_builder.CreateICmpNE(yArg, Constant::get(0));
auto yLEx = m_builder.CreateICmpULE(yArg, x);
auto r0 = m_builder.CreateSelect(yNonZero, x, Constant::get(0), "r0");
m_builder.CreateCondBr(m_builder.CreateAnd(yLEx, yNonZero), mainBB, returnBB);
m_builder.SetInsertPoint(mainBB);
auto ctlzIntr = llvm::Intrinsic::getDeclaration(getModule(), llvm::Intrinsic::ctlz, Type::Word);
// both y and r are non-zero
auto yLz = m_builder.CreateCall2(ctlzIntr, yArg, m_builder.getInt1(true), "y.lz");
auto rLz = m_builder.CreateCall2(ctlzIntr, r0, m_builder.getInt1(true), "r.lz");
auto i0 = m_builder.CreateNUWSub(yLz, rLz, "i0");
auto shlBy0 = m_builder.CreateICmpEQ(i0, Constant::get(0));
auto y0 = m_builder.CreateShl(yArg, i0);
y0 = m_builder.CreateSelect(shlBy0, yArg, y0, "y0"); // Workaround for LLVM bug: shl by 0 produces wrong result
m_builder.CreateBr(loopBB);
m_builder.SetInsertPoint(loopBB);
auto yPhi = m_builder.CreatePHI(Type::Word, 2, "y.phi");
auto rPhi = m_builder.CreatePHI(Type::Word, 2, "r.phi");
auto iPhi = m_builder.CreatePHI(Type::Word, 2, "i.phi");
auto qPhi = m_builder.CreatePHI(Type::Word, 2, "q.phi");
auto rUpdate = m_builder.CreateNUWSub(rPhi, yPhi);
auto qUpdate = m_builder.CreateOr(qPhi, Constant::get(1)); // q += 1, q lowest bit is 0
auto rGEy = m_builder.CreateICmpUGE(rPhi, yPhi);
auto r1 = m_builder.CreateSelect(rGEy, rUpdate, rPhi, "r1");
auto q1 = m_builder.CreateSelect(rGEy, qUpdate, qPhi, "q");
auto iZero = m_builder.CreateICmpEQ(iPhi, Constant::get(0));
m_builder.CreateCondBr(iZero, returnBB, continueBB);
m_builder.SetInsertPoint(continueBB);
auto i2 = m_builder.CreateNUWSub(iPhi, Constant::get(1));
auto q2 = m_builder.CreateShl(q1, Constant::get(1));
auto y2 = m_builder.CreateUDiv(yPhi, Constant::get(2));
m_builder.CreateBr(loopBB);
yPhi->addIncoming(y0, mainBB);
yPhi->addIncoming(y2, continueBB);
rPhi->addIncoming(r0, mainBB);
rPhi->addIncoming(r1, continueBB);
iPhi->addIncoming(i0, mainBB);
iPhi->addIncoming(i2, continueBB);
qPhi->addIncoming(Constant::get(0), mainBB);
qPhi->addIncoming(q2, continueBB);
m_builder.SetInsertPoint(returnBB);
auto qRet = m_builder.CreatePHI(Type::Word, 2, "q.ret");
qRet->addIncoming(Constant::get(0), entryBB);
qRet->addIncoming(q1, loopBB);
auto rRet = m_builder.CreatePHI(Type::Word, 2, "r.ret");
rRet->addIncoming(r0, entryBB);
rRet->addIncoming(r1, loopBB);
auto ret = m_builder.CreateInsertValue(llvm::UndefValue::get(retType), qRet, 0, "ret0");
ret = m_builder.CreateInsertValue(ret, rRet, 1, "ret");
m_builder.CreateRet(ret);
}
return m_newDiv;
}
llvm::Value* Arith256::binaryOp(llvm::Function* _op, llvm::Value* _arg1, llvm::Value* _arg2)
{
m_builder.CreateStore(_arg1, m_arg1);
m_builder.CreateStore(_arg2, m_arg2);
m_builder.CreateCall3(_op, m_arg1, m_arg2, m_result);
return m_builder.CreateLoad(m_result);
}
llvm::Value* Arith256::ternaryOp(llvm::Function* _op, llvm::Value* _arg1, llvm::Value* _arg2, llvm::Value* _arg3)
{
m_builder.CreateStore(_arg1, m_arg1);
m_builder.CreateStore(_arg2, m_arg2);
m_builder.CreateStore(_arg3, m_arg3);
m_builder.CreateCall4(_op, m_arg1, m_arg2, m_arg3, m_result);
return m_builder.CreateLoad(m_result);
}
llvm::Value* Arith256::mul(llvm::Value* _arg1, llvm::Value* _arg2)
{
return binaryOp(m_mul, _arg1, _arg2);
}
llvm::Value* Arith256::div(llvm::Value* _arg1, llvm::Value* _arg2)
{
return m_builder.CreateExtractValue(createCall(getDivFunc(), {_arg1, _arg2}), 0, "div");
}
llvm::Value* Arith256::mod(llvm::Value* _arg1, llvm::Value* _arg2)
{
return m_builder.CreateExtractValue(createCall(getDivFunc(), {_arg1, _arg2}), 1, "mod");
}
llvm::Value* Arith256::sdiv(llvm::Value* _arg1, llvm::Value* _arg2)
{
return binaryOp(m_sdiv, _arg1, _arg2);
}
llvm::Value* Arith256::smod(llvm::Value* _arg1, llvm::Value* _arg2)
{
return binaryOp(m_smod, _arg1, _arg2);
}
llvm::Value* Arith256::exp(llvm::Value* _arg1, llvm::Value* _arg2)
{
return binaryOp(m_exp, _arg1, _arg2);
}
llvm::Value* Arith256::addmod(llvm::Value* _arg1, llvm::Value* _arg2, llvm::Value* _arg3)
{
return ternaryOp(m_addmod, _arg1, _arg2, _arg3);
}
llvm::Value* Arith256::mulmod(llvm::Value* _arg1, llvm::Value* _arg2, llvm::Value* _arg3)
{
return ternaryOp(m_mulmod, _arg1, _arg2, _arg3);
}
namespace
{
using uint128 = __uint128_t;
// uint128 add(uint128 a, uint128 b) { return a + b; }
// uint128 mul(uint128 a, uint128 b) { return a * b; }
//
// uint128 mulq(uint64_t x, uint64_t y)
// {
// return (uint128)x * (uint128)y;
// }
//
// uint128 addc(uint64_t x, uint64_t y)
// {
// return (uint128)x * (uint128)y;
// }
struct uint256
{
uint64_t lo;
uint64_t mid;
uint128 hi;
};
// uint256 add(uint256 x, uint256 y)
// {
// auto lo = (uint128) x.lo + y.lo;
// auto mid = (uint128) x.mid + y.mid + (lo >> 64);
// return {lo, mid, x.hi + y.hi + (mid >> 64)};
// }
uint256 mul(uint256 x, uint256 y)
{
auto t1 = (uint128) x.lo * y.lo;
auto t2 = (uint128) x.lo * y.mid;
auto t3 = x.lo * y.hi;
auto t4 = (uint128) x.mid * y.lo;
auto t5 = (uint128) x.mid * y.mid;
auto t6 = x.mid * y.hi;
auto t7 = x.hi * y.lo;
auto t8 = x.hi * y.mid;
auto lo = (uint64_t) t1;
auto m1 = (t1 >> 64) + (uint64_t) t2;
auto m2 = (uint64_t) m1;
auto mid = (uint128) m2 + (uint64_t) t4;
auto hi = (t2 >> 64) + t3 + (t4 >> 64) + t5 + (t6 << 64) + t7
+ (t8 << 64) + (m1 >> 64) + (mid >> 64);
return {lo, (uint64_t)mid, hi};
}
bool isZero(i256 const* _n)
{
return _n->a == 0 && _n->b == 0 && _n->c == 0 && _n->d == 0;
}
const auto nLimbs = sizeof(i256) / sizeof(mp_limb_t);
// FIXME: Not thread-safe
static mp_limb_t mod_limbs[] = {0, 0, 0, 0, 1};
static_assert(sizeof(mod_limbs) / sizeof(mod_limbs[0]) == nLimbs + 1, "mp_limb_t size mismatch");
static const mpz_t mod{nLimbs + 1, nLimbs + 1, &mod_limbs[0]};
static mp_limb_t tmp_limbs[nLimbs + 2];
static mpz_t tmp{nLimbs + 2, 0, &tmp_limbs[0]};
int countLimbs(i256 const* _n)
{
static const auto limbsInWord = sizeof(_n->a) / sizeof(mp_limb_t);
static_assert(limbsInWord == 1, "E?");
int l = nLimbs;
if (_n->d != 0) return l;
l -= limbsInWord;
if (_n->c != 0) return l;
l -= limbsInWord;
if (_n->b != 0) return l;
l -= limbsInWord;
if (_n->a != 0) return l;
return 0;
}
void u2s(mpz_t _u)
{
if (static_cast<std::make_signed<mp_limb_t>::type>(_u->_mp_d[nLimbs - 1]) < 0)
{
mpz_sub(tmp, mod, _u);
mpz_set(_u, tmp);
_u->_mp_size = -_u->_mp_size;
}
}
void s2u(mpz_t _s)
{
if (_s->_mp_size < 0)
{
mpz_add(tmp, mod, _s);
mpz_set(_s, tmp);
}
}
}
}
}
}
extern "C"
{
using namespace dev::eth::jit;
EXPORT void arith_mul(uint256* _arg1, uint256* _arg2, uint256* o_result)
{
*o_result = mul(*_arg1, *_arg2);
}
EXPORT void arith_sdiv(i256* _arg1, i256* _arg2, i256* o_result)
{
*o_result = {};
if (isZero(_arg2))
return;
mpz_t x{nLimbs, countLimbs(_arg1), reinterpret_cast<mp_limb_t*>(_arg1)};
mpz_t y{nLimbs, countLimbs(_arg2), reinterpret_cast<mp_limb_t*>(_arg2)};
mpz_t z{nLimbs, 0, reinterpret_cast<mp_limb_t*>(o_result)};
u2s(x);
u2s(y);
mpz_tdiv_q(z, x, y);
s2u(z);
}
EXPORT void arith_smod(i256* _arg1, i256* _arg2, i256* o_result)
{
*o_result = {};
if (isZero(_arg2))
return;
mpz_t x{nLimbs, countLimbs(_arg1), reinterpret_cast<mp_limb_t*>(_arg1)};
mpz_t y{nLimbs, countLimbs(_arg2), reinterpret_cast<mp_limb_t*>(_arg2)};
mpz_t z{nLimbs, 0, reinterpret_cast<mp_limb_t*>(o_result)};
u2s(x);
u2s(y);
mpz_tdiv_r(z, x, y);
s2u(z);
}
EXPORT void arith_exp(i256* _arg1, i256* _arg2, i256* o_result)
{
*o_result = {};
static mp_limb_t mod_limbs[nLimbs + 1] = {};
mod_limbs[nLimbs] = 1;
static const mpz_t mod{nLimbs + 1, nLimbs + 1, &mod_limbs[0]};
mpz_t x{nLimbs, countLimbs(_arg1), reinterpret_cast<mp_limb_t*>(_arg1)};
mpz_t y{nLimbs, countLimbs(_arg2), reinterpret_cast<mp_limb_t*>(_arg2)};
mpz_t z{nLimbs, 0, reinterpret_cast<mp_limb_t*>(o_result)};
mpz_powm(z, x, y, mod);
}
EXPORT void arith_mulmod(i256* _arg1, i256* _arg2, i256* _arg3, i256* o_result)
{
*o_result = {};
if (isZero(_arg3))
return;
mpz_t x{nLimbs, countLimbs(_arg1), reinterpret_cast<mp_limb_t*>(_arg1)};
mpz_t y{nLimbs, countLimbs(_arg2), reinterpret_cast<mp_limb_t*>(_arg2)};
mpz_t m{nLimbs, countLimbs(_arg3), reinterpret_cast<mp_limb_t*>(_arg3)};
mpz_t z{nLimbs, 0, reinterpret_cast<mp_limb_t*>(o_result)};
static mp_limb_t p_limbs[nLimbs * 2] = {};
static mpz_t p{nLimbs * 2, 0, &p_limbs[0]};
mpz_mul(p, x, y);
mpz_tdiv_r(z, p, m);
}
EXPORT void arith_addmod(i256* _arg1, i256* _arg2, i256* _arg3, i256* o_result)
{
*o_result = {};
if (isZero(_arg3))
return;
mpz_t x{nLimbs, countLimbs(_arg1), reinterpret_cast<mp_limb_t*>(_arg1)};
mpz_t y{nLimbs, countLimbs(_arg2), reinterpret_cast<mp_limb_t*>(_arg2)};
mpz_t m{nLimbs, countLimbs(_arg3), reinterpret_cast<mp_limb_t*>(_arg3)};
mpz_t z{nLimbs, 0, reinterpret_cast<mp_limb_t*>(o_result)};
static mp_limb_t s_limbs[nLimbs + 1] = {};
static mpz_t s{nLimbs + 1, 0, &s_limbs[0]};
mpz_add(s, x, y);
mpz_tdiv_r(z, s, m);
}
}