You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
672 lines
17 KiB
672 lines
17 KiB
/*
|
|
This file is part of cpp-ethereum.
|
|
|
|
cpp-ethereum is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Foobar is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with Foobar. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
/** @file State.cpp
|
|
* @author Gav Wood <i@gavwood.com>
|
|
* @date 2014
|
|
*/
|
|
|
|
#include <secp256k1.h>
|
|
#include <random>
|
|
#include "Trie.h"
|
|
#include "BlockChain.h"
|
|
#include "Instruction.h"
|
|
#include "Exceptions.h"
|
|
#include "sha256.h"
|
|
#include "State.h"
|
|
using namespace std;
|
|
using namespace eth;
|
|
|
|
u256 const State::c_stepFee = 0;
|
|
u256 const State::c_dataFee = 0;
|
|
u256 const State::c_memoryFee = 0;
|
|
u256 const State::c_extroFee = 0;
|
|
u256 const State::c_cryptoFee = 0;
|
|
u256 const State::c_newContractFee = 0;
|
|
u256 const State::c_txFee = 0;
|
|
|
|
State::State(Address _minerAddress): m_minerAddress(_minerAddress)
|
|
{
|
|
secp256k1_start();
|
|
m_previousBlock = BlockInfo::genesis();
|
|
m_currentBlock.number = 1;
|
|
}
|
|
|
|
void State::sync(BlockChain const& _bc, TransactionQueue const& _tq)
|
|
{
|
|
BlockInfo bi;
|
|
try
|
|
{
|
|
bi.verify(_bc.lastBlock(), _bc.lastBlockNumber());
|
|
}
|
|
catch (...)
|
|
{
|
|
cerr << "ERROR: Corrupt block-chain! Delete your block-chain DB and restart." << endl;
|
|
exit(1);
|
|
}
|
|
|
|
if (bi == m_currentBlock)
|
|
{
|
|
// We mined the last block.
|
|
// Our state is good - we just need to move on to next.
|
|
m_previousBlock = m_currentBlock;
|
|
m_current.clear();
|
|
m_transactions.clear();
|
|
m_currentBlock = BlockInfo();
|
|
m_currentBlock.number = m_previousBlock.number + 1;
|
|
}
|
|
else if (bi == m_previousBlock)
|
|
{
|
|
// No change since last sync.
|
|
// Carry on as we were.
|
|
}
|
|
else
|
|
{
|
|
// New blocks available, or we've switched to a different branch. All change.
|
|
// TODO: Find most recent state dump and replay what's left.
|
|
// (Most recent state dump might end up being genesis.)
|
|
}
|
|
}
|
|
|
|
bool State::mine(uint _msTimeout) const
|
|
{
|
|
// TODO: update timestamp according to clock.
|
|
// TODO: update difficulty according to timestamp.
|
|
// TODO: look for a nonce that makes a good hash.
|
|
// ...but don't take longer than _msTimeout ms.
|
|
return false;
|
|
}
|
|
|
|
bool State::isNormalAddress(Address _address) const
|
|
{
|
|
auto it = m_current.find(_address);
|
|
return it != m_current.end() && it->second.type() == AddressType::Normal;
|
|
}
|
|
|
|
bool State::isContractAddress(Address _address) const
|
|
{
|
|
auto it = m_current.find(_address);
|
|
return it != m_current.end() && it->second.type() == AddressType::Contract;
|
|
}
|
|
|
|
u256 State::balance(Address _id) const
|
|
{
|
|
auto it = m_current.find(_id);
|
|
return it == m_current.end() ? 0 : it->second.balance();
|
|
}
|
|
|
|
void State::addBalance(Address _id, u256 _amount)
|
|
{
|
|
auto it = m_current.find(_id);
|
|
if (it == m_current.end())
|
|
it->second.balance() = _amount;
|
|
else
|
|
it->second.balance() += _amount;
|
|
}
|
|
|
|
void State::subBalance(Address _id, bigint _amount)
|
|
{
|
|
auto it = m_current.find(_id);
|
|
if (it == m_current.end() || (bigint)it->second.balance() < _amount)
|
|
throw NotEnoughCash();
|
|
it->second.balance() = (u256)((bigint)it->second.balance() - _amount);
|
|
}
|
|
|
|
u256 State::transactionsFrom(Address _address) const
|
|
{
|
|
auto it = m_current.find(_address);
|
|
return it == m_current.end() ? 0 : it->second.nonce();
|
|
}
|
|
|
|
u256 State::contractMemory(Address _contract, u256 _memory) const
|
|
{
|
|
auto m = m_current.find(_contract);
|
|
if (m == m_current.end())
|
|
return 0;
|
|
auto i = m->second.memory().find(_memory);
|
|
return i == m->second.memory().end() ? 0 : i->second;
|
|
}
|
|
|
|
bool State::verify(bytes const& _block, uint _number)
|
|
{
|
|
BlockInfo bi;
|
|
try
|
|
{
|
|
bi.verify(bytesConstRef((bytes*)&_block), _number);
|
|
}
|
|
catch (...)
|
|
{
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void State::execute(Transaction const& _t, Address _sender)
|
|
{
|
|
// Entry point for a contract-originated transaction.
|
|
|
|
// Ignore invalid transactions.
|
|
if (_t.nonce != transactionsFrom(_sender))
|
|
throw InvalidNonce();
|
|
|
|
// Add to the transactions in
|
|
m_transactions.push_back(_t);
|
|
|
|
// Not considered invalid - just pointless.
|
|
if (balance(_sender) < _t.value + _t.fee)
|
|
throw NotEnoughCash();
|
|
|
|
if (_t.receiveAddress)
|
|
{
|
|
subBalance(_sender, _t.value + _t.fee);
|
|
addBalance(_t.receiveAddress, _t.value);
|
|
addBalance(m_minerAddress, _t.fee);
|
|
|
|
if (isContractAddress(_t.receiveAddress))
|
|
{
|
|
MinerFeeAdder feeAdder({this, 0}); // will add fee on destruction.
|
|
execute(_t.receiveAddress, _sender, _t.value, _t.fee, _t.data, &feeAdder.fee);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (_t.fee < _t.data.size() * c_memoryFee + c_newContractFee)
|
|
throw FeeTooSmall();
|
|
|
|
Address newAddress = low160(_t.sha256());
|
|
|
|
if (isContractAddress(newAddress))
|
|
throw ContractAddressCollision();
|
|
|
|
auto& mem = m_current[newAddress].memory();
|
|
for (uint i = 0; i < _t.data.size(); ++i)
|
|
mem[i] = _t.data[i];
|
|
subBalance(_sender, _t.value + _t.fee);
|
|
addBalance(newAddress, _t.value);
|
|
addBalance(m_minerAddress, _t.fee);
|
|
}
|
|
}
|
|
|
|
void State::execute(Address _myAddress, Address _txSender, u256 _txValue, u256 _txFee, u256s const& _txData, u256* _totalFee)
|
|
{
|
|
std::vector<u256> stack;
|
|
|
|
// Find our memory.
|
|
auto m = m_current.find(_myAddress);
|
|
if (m == m_current.end())
|
|
throw NoSuchContract();
|
|
auto& myMemory = m->second.memory();
|
|
|
|
// Set up some local functions.
|
|
auto require = [&](u256 _n)
|
|
{
|
|
if (stack.size() < _n)
|
|
throw StackTooSmall(_n, stack.size());
|
|
};
|
|
auto mem = [&](u256 _n) -> u256
|
|
{
|
|
auto i = myMemory.find(_n);
|
|
return i == myMemory.end() ? 0 : i->second;
|
|
};
|
|
auto setMem = [&](u256 _n, u256 _v)
|
|
{
|
|
if (_v)
|
|
myMemory[_n] = _v;
|
|
else
|
|
myMemory.erase(_n);
|
|
};
|
|
|
|
u256 curPC = 0;
|
|
u256 nextPC = 1;
|
|
u256 stepCount = 0;
|
|
for (bool stopped = false; !stopped; curPC = nextPC, nextPC = curPC + 1)
|
|
{
|
|
stepCount++;
|
|
|
|
bigint minerFee = stepCount > 16 ? c_stepFee : 0;
|
|
bigint voidFee = 0;
|
|
|
|
auto rawInst = mem(curPC);
|
|
if (rawInst > 0xff)
|
|
throw BadInstruction();
|
|
Instruction inst = (Instruction)(uint8_t)rawInst;
|
|
|
|
switch (inst)
|
|
{
|
|
case Instruction::STORE:
|
|
require(2);
|
|
if (!mem(stack.back()) && stack[stack.size() - 2])
|
|
voidFee += c_memoryFee;
|
|
if (mem(stack.back()) && !stack[stack.size() - 2])
|
|
voidFee -= c_memoryFee;
|
|
// continue on to...
|
|
case Instruction::LOAD:
|
|
minerFee += c_dataFee;
|
|
break;
|
|
|
|
case Instruction::EXTRO:
|
|
case Instruction::BALANCE:
|
|
minerFee += c_extroFee;
|
|
break;
|
|
|
|
case Instruction::MKTX:
|
|
minerFee += c_txFee;
|
|
break;
|
|
|
|
case Instruction::SHA256:
|
|
case Instruction::RIPEMD160:
|
|
case Instruction::ECMUL:
|
|
case Instruction::ECADD:
|
|
case Instruction::ECSIGN:
|
|
case Instruction::ECRECOVER:
|
|
case Instruction::ECVALID:
|
|
minerFee += c_cryptoFee;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (minerFee + voidFee > balance(_myAddress))
|
|
throw NotEnoughCash();
|
|
subBalance(_myAddress, minerFee + voidFee);
|
|
*_totalFee += (u256)minerFee;
|
|
|
|
switch (inst)
|
|
{
|
|
case Instruction::ADD:
|
|
//pops two items and pushes S[-1] + S[-2] mod 2^256.
|
|
require(2);
|
|
stack[stack.size() - 2] += stack.back();
|
|
stack.pop_back();
|
|
break;
|
|
case Instruction::MUL:
|
|
//pops two items and pushes S[-1] * S[-2] mod 2^256.
|
|
require(2);
|
|
stack[stack.size() - 2] *= stack.back();
|
|
stack.pop_back();
|
|
break;
|
|
case Instruction::SUB:
|
|
require(2);
|
|
stack[stack.size() - 2] = stack.back() - stack[stack.size() - 2];
|
|
stack.pop_back();
|
|
break;
|
|
case Instruction::DIV:
|
|
require(2);
|
|
stack[stack.size() - 2] = stack.back() / stack[stack.size() - 2];
|
|
stack.pop_back();
|
|
break;
|
|
case Instruction::SDIV:
|
|
require(2);
|
|
(s256&)stack[stack.size() - 2] = (s256&)stack.back() / (s256&)stack[stack.size() - 2];
|
|
stack.pop_back();
|
|
break;
|
|
case Instruction::MOD:
|
|
require(2);
|
|
stack[stack.size() - 2] = stack.back() % stack[stack.size() - 2];
|
|
stack.pop_back();
|
|
break;
|
|
case Instruction::SMOD:
|
|
require(2);
|
|
(s256&)stack[stack.size() - 2] = (s256&)stack.back() % (s256&)stack[stack.size() - 2];
|
|
stack.pop_back();
|
|
break;
|
|
case Instruction::EXP:
|
|
{
|
|
// TODO: better implementation?
|
|
require(2);
|
|
auto n = stack.back();
|
|
auto x = stack[stack.size() - 2];
|
|
stack.pop_back();
|
|
for (u256 i = 0; i < x; ++i)
|
|
n *= n;
|
|
stack.back() = n;
|
|
break;
|
|
}
|
|
case Instruction::NEG:
|
|
require(1);
|
|
stack.back() = ~(stack.back() - 1);
|
|
break;
|
|
case Instruction::LT:
|
|
require(2);
|
|
stack[stack.size() - 2] = stack.back() < stack[stack.size() - 2] ? 1 : 0;
|
|
stack.pop_back();
|
|
break;
|
|
case Instruction::LE:
|
|
require(2);
|
|
stack[stack.size() - 2] = stack.back() <= stack[stack.size() - 2] ? 1 : 0;
|
|
stack.pop_back();
|
|
break;
|
|
case Instruction::GT:
|
|
require(2);
|
|
stack[stack.size() - 2] = stack.back() > stack[stack.size() - 2] ? 1 : 0;
|
|
stack.pop_back();
|
|
break;
|
|
case Instruction::GE:
|
|
require(2);
|
|
stack[stack.size() - 2] = stack.back() >= stack[stack.size() - 2] ? 1 : 0;
|
|
stack.pop_back();
|
|
break;
|
|
case Instruction::EQ:
|
|
require(2);
|
|
stack[stack.size() - 2] = stack.back() == stack[stack.size() - 2] ? 1 : 0;
|
|
stack.pop_back();
|
|
break;
|
|
case Instruction::NOT:
|
|
require(1);
|
|
stack.back() = stack.back() ? 0 : 1;
|
|
stack.pop_back();
|
|
break;
|
|
case Instruction::MYADDRESS:
|
|
stack.push_back(_myAddress);
|
|
break;
|
|
case Instruction::TXSENDER:
|
|
stack.push_back(_txSender);
|
|
break;
|
|
case Instruction::TXVALUE:
|
|
stack.push_back(_txValue);
|
|
break;
|
|
case Instruction::TXFEE:
|
|
stack.push_back(_txFee);
|
|
break;
|
|
case Instruction::TXDATAN:
|
|
stack.push_back(_txData.size());
|
|
break;
|
|
case Instruction::TXDATA:
|
|
require(1);
|
|
stack.back() = stack.back() < _txData.size() ? _txData[(uint)stack.back()] : 0;
|
|
break;
|
|
case Instruction::BLK_PREVHASH:
|
|
stack.push_back(m_previousBlock.hash);
|
|
break;
|
|
case Instruction::BLK_COINBASE:
|
|
stack.push_back(m_currentBlock.coinbaseAddress);
|
|
break;
|
|
case Instruction::BLK_TIMESTAMP:
|
|
stack.push_back(m_currentBlock.timestamp);
|
|
break;
|
|
case Instruction::BLK_NUMBER:
|
|
stack.push_back(m_currentBlock.number);
|
|
break;
|
|
case Instruction::BLK_DIFFICULTY:
|
|
stack.push_back(m_currentBlock.difficulty);
|
|
break;
|
|
case Instruction::SHA256:
|
|
case Instruction::RIPEMD160:
|
|
{
|
|
uint s = (uint)min(stack.back(), (u256)(stack.size() - 1) * 32);
|
|
bytes b(s);
|
|
uint i = 0;
|
|
for (; s; s = (s >= 32 ? s - 32 : 0), i += 32)
|
|
{
|
|
stack.pop_back();
|
|
u256 v = stack.back();
|
|
int sz = (int)min<u256>(32, s) - 1; // sz is one fewer than the number of bytes we're interested in.
|
|
v >>= ((31 - sz) * 8); // kill unused low-order bytes.
|
|
for (int j = 0; j <= sz; ++j, v >>= 8) // cycle through bytes, starting at low-order end.
|
|
b[i + sz - j] = (byte)(v & 0xff); // set each 32-byte (256-bit) chunk in reverse - (i.e. we want to put low-order last).
|
|
}
|
|
if (inst == Instruction::SHA256)
|
|
stack.back() = sha256(b);
|
|
else
|
|
// NOTE: this aligns to right of 256-bit container (low-order bytes).
|
|
// This won't work if they're treated as byte-arrays and thus left-aligned in a 256-bit container.
|
|
stack.back() = ripemd160(&b);
|
|
break;
|
|
}
|
|
case Instruction::ECMUL:
|
|
{
|
|
// ECMUL - pops three items.
|
|
// If (S[-2],S[-1]) are a valid point in secp256k1, including both coordinates being less than P, pushes (S[-1],S[-2]) * S[-3], using (0,0) as the point at infinity.
|
|
// Otherwise, pushes (0,0).
|
|
require(3);
|
|
|
|
bytes pub(1, 4);
|
|
pub += toBigEndian(stack[stack.size() - 2]);
|
|
pub += toBigEndian(stack.back());
|
|
stack.pop_back();
|
|
stack.pop_back();
|
|
|
|
bytes x = toBigEndian(stack.back());
|
|
stack.pop_back();
|
|
|
|
if (secp256k1_ecdsa_pubkey_verify(pub.data(), pub.size())) // TODO: Check both are less than P.
|
|
{
|
|
secp256k1_ecdsa_pubkey_tweak_mul(pub.data(), pub.size(), x.data());
|
|
stack.push_back(fromBigEndian<u256>(bytesConstRef(&pub).cropped(1, 32)));
|
|
stack.push_back(fromBigEndian<u256>(bytesConstRef(&pub).cropped(33, 32)));
|
|
}
|
|
else
|
|
{
|
|
stack.push_back(0);
|
|
stack.push_back(0);
|
|
}
|
|
break;
|
|
}
|
|
case Instruction::ECADD:
|
|
{
|
|
// ECADD - pops four items and pushes (S[-4],S[-3]) + (S[-2],S[-1]) if both points are valid, otherwise (0,0).
|
|
require(4);
|
|
|
|
bytes pub(1, 4);
|
|
pub += toBigEndian(stack[stack.size() - 2]);
|
|
pub += toBigEndian(stack.back());
|
|
stack.pop_back();
|
|
stack.pop_back();
|
|
|
|
bytes tweak(1, 4);
|
|
tweak += toBigEndian(stack[stack.size() - 2]);
|
|
tweak += toBigEndian(stack.back());
|
|
stack.pop_back();
|
|
stack.pop_back();
|
|
|
|
if (secp256k1_ecdsa_pubkey_verify(pub.data(), pub.size()) && secp256k1_ecdsa_pubkey_verify(tweak.data(), tweak.size()))
|
|
{
|
|
secp256k1_ecdsa_pubkey_tweak_add(pub.data(), pub.size(), tweak.data());
|
|
stack.push_back(fromBigEndian<u256>(bytesConstRef(&pub).cropped(1, 32)));
|
|
stack.push_back(fromBigEndian<u256>(bytesConstRef(&pub).cropped(33, 32)));
|
|
}
|
|
else
|
|
{
|
|
stack.push_back(0);
|
|
stack.push_back(0);
|
|
}
|
|
break;
|
|
}
|
|
case Instruction::ECSIGN:
|
|
{
|
|
require(2);
|
|
bytes sig(64);
|
|
int v = 0;
|
|
|
|
u256 msg = stack.back();
|
|
stack.pop_back();
|
|
u256 priv = stack.back();
|
|
stack.pop_back();
|
|
bytes nonce = toBigEndian(Transaction::kFromMessage(msg, priv));
|
|
|
|
if (!secp256k1_ecdsa_sign_compact(toBigEndian(msg).data(), 64, sig.data(), toBigEndian(priv).data(), nonce.data(), &v))
|
|
throw InvalidSignature();
|
|
|
|
stack.push_back(v + 27);
|
|
stack.push_back(fromBigEndian<u256>(bytesConstRef(&sig).cropped(0, 32)));
|
|
stack.push_back(fromBigEndian<u256>(bytesConstRef(&sig).cropped(32)));
|
|
break;
|
|
}
|
|
case Instruction::ECRECOVER:
|
|
{
|
|
require(4);
|
|
|
|
bytes sig = toBigEndian(stack[stack.size() - 2]) + toBigEndian(stack.back());
|
|
stack.pop_back();
|
|
stack.pop_back();
|
|
int v = (int)stack.back();
|
|
stack.pop_back();
|
|
bytes msg = toBigEndian(stack.back());
|
|
stack.pop_back();
|
|
|
|
byte pubkey[65];
|
|
int pubkeylen = 65;
|
|
if (secp256k1_ecdsa_recover_compact(msg.data(), msg.size(), sig.data(), pubkey, &pubkeylen, 0, v - 27))
|
|
{
|
|
stack.push_back(0);
|
|
stack.push_back(0);
|
|
}
|
|
else
|
|
{
|
|
stack.push_back(fromBigEndian<u256>(bytesConstRef(&pubkey[1], 32)));
|
|
stack.push_back(fromBigEndian<u256>(bytesConstRef(&pubkey[33], 32)));
|
|
}
|
|
break;
|
|
}
|
|
case Instruction::ECVALID:
|
|
{
|
|
require(2);
|
|
bytes pub(1, 4);
|
|
pub += toBigEndian(stack[stack.size() - 2]);
|
|
pub += toBigEndian(stack.back());
|
|
stack.pop_back();
|
|
stack.pop_back();
|
|
|
|
stack.back() = secp256k1_ecdsa_pubkey_verify(pub.data(), pub.size()) ? 1 : 0;
|
|
break;
|
|
}
|
|
case Instruction::PUSH:
|
|
{
|
|
stack.push_back(mem(curPC + 1));
|
|
nextPC = curPC + 2;
|
|
break;
|
|
}
|
|
case Instruction::POP:
|
|
require(1);
|
|
stack.pop_back();
|
|
break;
|
|
case Instruction::DUP:
|
|
require(1);
|
|
stack.push_back(stack.back());
|
|
break;
|
|
case Instruction::DUPN:
|
|
{
|
|
auto s = mem(curPC + 1);
|
|
if (s == 0 || s > stack.size())
|
|
throw OperandOutOfRange(1, stack.size(), s);
|
|
stack.push_back(stack[stack.size() - (uint)s]);
|
|
nextPC = curPC + 2;
|
|
break;
|
|
}
|
|
case Instruction::SWAP:
|
|
{
|
|
require(2);
|
|
auto d = stack.back();
|
|
stack.back() = stack[stack.size() - 2];
|
|
stack[stack.size() - 2] = d;
|
|
break;
|
|
}
|
|
case Instruction::SWAPN:
|
|
{
|
|
require(1);
|
|
auto d = stack.back();
|
|
auto s = mem(curPC + 1);
|
|
if (s == 0 || s > stack.size())
|
|
throw OperandOutOfRange(1, stack.size(), s);
|
|
stack.back() = stack[stack.size() - (uint)s];
|
|
stack[stack.size() - (uint)s] = d;
|
|
nextPC = curPC + 2;
|
|
break;
|
|
}
|
|
case Instruction::LOAD:
|
|
require(1);
|
|
stack.back() = mem(stack.back());
|
|
break;
|
|
case Instruction::STORE:
|
|
require(2);
|
|
setMem(stack.back(), stack[stack.size() - 2]);
|
|
stack.pop_back();
|
|
stack.pop_back();
|
|
break;
|
|
case Instruction::JMP:
|
|
require(1);
|
|
nextPC = stack.back();
|
|
stack.pop_back();
|
|
break;
|
|
case Instruction::JMPI:
|
|
require(2);
|
|
if (stack.back())
|
|
nextPC = stack[stack.size() - 2];
|
|
stack.pop_back();
|
|
stack.pop_back();
|
|
break;
|
|
case Instruction::IND:
|
|
stack.push_back(curPC);
|
|
break;
|
|
case Instruction::EXTRO:
|
|
{
|
|
require(2);
|
|
auto memoryAddress = stack.back();
|
|
stack.pop_back();
|
|
Address contractAddress = as160(stack.back());
|
|
stack.back() = contractMemory(contractAddress, memoryAddress);
|
|
break;
|
|
}
|
|
case Instruction::BALANCE:
|
|
{
|
|
require(1);
|
|
stack.back() = balance(as160(stack.back()));
|
|
break;
|
|
}
|
|
case Instruction::MKTX:
|
|
{
|
|
require(4);
|
|
|
|
Transaction t;
|
|
t.receiveAddress = as160(stack.back());
|
|
stack.pop_back();
|
|
t.value = stack.back();
|
|
stack.pop_back();
|
|
t.fee = stack.back();
|
|
stack.pop_back();
|
|
|
|
auto itemCount = stack.back();
|
|
stack.pop_back();
|
|
if (stack.size() < itemCount)
|
|
throw OperandOutOfRange(0, stack.size(), itemCount);
|
|
t.data.reserve((uint)itemCount);
|
|
for (auto i = 0; i < itemCount; ++i)
|
|
{
|
|
t.data.push_back(stack.back());
|
|
stack.pop_back();
|
|
}
|
|
|
|
t.nonce = transactionsFrom(_myAddress);
|
|
execute(t, _myAddress);
|
|
|
|
break;
|
|
}
|
|
case Instruction::SUICIDE:
|
|
{
|
|
require(1);
|
|
Address dest = as160(stack.back());
|
|
u256 minusVoidFee = m_current[_myAddress].memory().size() * c_memoryFee;
|
|
addBalance(dest, balance(_myAddress) + minusVoidFee);
|
|
m_current.erase(_myAddress);
|
|
// ...follow through to...
|
|
}
|
|
case Instruction::STOP:
|
|
return;
|
|
default:
|
|
throw BadInstruction();
|
|
}
|
|
}
|
|
}
|
|
|