You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

687 lines
23 KiB

/*
This file is part of cpp-ethereum.
cpp-ethereum is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
cpp-ethereum is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with cpp-ethereum. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file Common.h
* @author Gav Wood <i@gavwood.com>
* @date 2014
*
* Shared algorithms and data types.
*/
#pragma once
// define version
#define ETH_VERSION 0.3.8
// way to many uint to size_t warnings in 32 bit build
#ifdef _M_IX86
#pragma warning(disable:4244)
#endif
#ifdef _MSC_VER
#define _ALLOW_KEYWORD_MACROS
#define noexcept throw()
#endif
#include <ctime>
#include <chrono>
#include <array>
#include <map>
#include <unordered_map>
#include <set>
#include <array>
#include <list>
#include <set>
#include <string>
#include <cassert>
#include <sstream>
#include <cstdint>
#include <type_traits>
#include <boost/multiprecision/cpp_int.hpp>
#include <boost/thread.hpp>
#include "vector_ref.h"
// CryptoPP defines byte in the global namespace, so so must we.
using byte = uint8_t;
namespace eth
{
// Binary data types.
using bytes = std::vector<byte>;
using bytesRef = vector_ref<byte>;
using bytesConstRef = vector_ref<byte const>;
// Numeric types.
using bigint = boost::multiprecision::number<boost::multiprecision::cpp_int_backend<>>;
using u256 = boost::multiprecision::number<boost::multiprecision::cpp_int_backend<256, 256, boost::multiprecision::unsigned_magnitude, boost::multiprecision::unchecked, void>>;
using s256 = boost::multiprecision::number<boost::multiprecision::cpp_int_backend<256, 256, boost::multiprecision::signed_magnitude, boost::multiprecision::unchecked, void>>;
using u160 = boost::multiprecision::number<boost::multiprecision::cpp_int_backend<160, 160, boost::multiprecision::unsigned_magnitude, boost::multiprecision::unchecked, void>>;
using s160 = boost::multiprecision::number<boost::multiprecision::cpp_int_backend<160, 160, boost::multiprecision::signed_magnitude, boost::multiprecision::unchecked, void>>;
using uint = uint64_t;
using sint = int64_t;
using u256s = std::vector<u256>;
using u160s = std::vector<u160>;
using u256Set = std::set<u256>;
using u160Set = std::set<u160>;
template <class T, class Out> inline void toBigEndian(T _val, Out& o_out);
template <class T, class In> inline T fromBigEndian(In const& _bytes);
/// Convert a series of bytes to the corresponding string of hex duplets.
/// @param _w specifies the width of each of the elements. Defaults to two - enough to represent a byte.
/// @example asHex("A\x69") == "4169"
template <class _T>
std::string asHex(_T const& _data, int _w = 2)
{
std::ostringstream ret;
for (auto i: _data)
ret << std::hex << std::setfill('0') << std::setw(_w) << (int)(typename std::make_unsigned<decltype(i)>::type)i;
return ret.str();
}
/// Converts a (printable) ASCII hex string into the corresponding byte stream.
/// @example fromUserHex("41626261") == asBytes("Abba")
bytes fromUserHex(std::string const& _s);
template <unsigned T> class UnitTest {};
template <unsigned N>
class FixedHash
{
using Arith = boost::multiprecision::number<boost::multiprecision::cpp_int_backend<N * 8, N * 8, boost::multiprecision::unsigned_magnitude, boost::multiprecision::unchecked, void>>;
public:
enum { size = N };
enum ConstructFromPointerType { ConstructFromPointer };
FixedHash() { m_data.fill(0); }
FixedHash(Arith const& _arith) { toBigEndian(_arith, m_data); }
explicit FixedHash(bytes const& _b) { if (_b.size() == N) memcpy(m_data.data(), _b.data(), std::min<uint>(_b.size(), N)); }
explicit FixedHash(byte const* _bs, ConstructFromPointerType) { memcpy(m_data.data(), _bs, N); }
explicit FixedHash(std::string const& _user): FixedHash(fromUserHex(_user)) {}
operator Arith() const { return fromBigEndian<Arith>(m_data); }
operator bool() const { return ((Arith)*this) != 0; }
bool operator==(FixedHash const& _c) const { return m_data == _c.m_data; }
bool operator!=(FixedHash const& _c) const { return m_data != _c.m_data; }
bool operator<(FixedHash const& _c) const { return m_data < _c.m_data; }
FixedHash& operator^=(FixedHash const& _c) { for (auto i = 0; i < N; ++i) m_data[i] ^= _c.m_data[i]; return *this; }
FixedHash operator^(FixedHash const& _c) const { return FixedHash(*this) ^= _c; }
FixedHash& operator|=(FixedHash const& _c) { for (auto i = 0; i < N; ++i) m_data[i] |= _c.m_data[i]; return *this; }
FixedHash operator|(FixedHash const& _c) const { return FixedHash(*this) |= _c; }
FixedHash& operator&=(FixedHash const& _c) { for (auto i = 0; i < N; ++i) m_data[i] &= _c.m_data[i]; return *this; }
FixedHash operator&(FixedHash const& _c) const { return FixedHash(*this) &= _c; }
FixedHash& operator~() { for (auto i = 0; i < N; ++i) m_data[i] = ~m_data[i]; return *this; }
std::string abridged() const { return asHex(ref().cropped(0, 4)) + ".."; }
byte& operator[](unsigned _i) { return m_data[_i]; }
byte operator[](unsigned _i) const { return m_data[_i]; }
bytesRef ref() { return bytesRef(m_data.data(), N); }
bytesConstRef ref() const { return bytesConstRef(m_data.data(), N); }
byte* data() { return m_data.data(); }
byte const* data() const { return m_data.data(); }
bytes asBytes() const { return bytes(data(), data() + N); }
std::array<byte, N>& asArray() { return m_data; }
std::array<byte, N> const& asArray() const { return m_data; }
// generic std::hash compatible function object
struct hash
{
size_t operator()(FixedHash const& value) const
{
size_t h = 0;
for (auto i: value.m_data)
h = (h << 5 - h) + i;
return h;
}
};
private:
std::array<byte, N> m_data;
};
// fast equality for h256
template<> inline bool FixedHash<32>::operator==(FixedHash<32> const& _other) const
{
const uint64_t* hash1 = (const uint64_t*)this->data();
const uint64_t* hash2 = (const uint64_t*)_other.data();
return (hash1[0] == hash2[0]) && (hash1[1] == hash2[1]) && (hash1[2] == hash2[2]) && (hash1[3] == hash2[3]);
}
// fast std::hash compatible hash function object for h256
template<> inline size_t FixedHash<32>::hash::operator()(FixedHash<32> const& value) const
{
const uint64_t*data = (const uint64_t*)value.data();
uint64_t hash = data[0];
hash ^= data[1];
hash ^= data[2];
hash ^= data[3];
return (size_t)hash;
}
template <unsigned N>
inline std::ostream& operator<<(std::ostream& _out, FixedHash<N> const& _h)
{
_out << std::noshowbase << std::hex << std::setfill('0');
for (unsigned i = 0; i < N; ++i)
_out << std::setw(2) << (int)_h[i];
_out << std::dec;
return _out;
}
using h512 = FixedHash<64>;
using h256 = FixedHash<32>;
using h160 = FixedHash<20>;
using h256s = std::vector<h256>;
using h160s = std::vector<h160>;
using h256Set = std::set<h256>;
using h160Set = std::set<h160>;
using Secret = h256;
using Public = h512;
using Address = h160;
using Addresses = h160s;
// Map types.
using StringMap = std::map<std::string, std::string>;
using u256Map = std::map<u256, u256>;
using HexMap = std::map<bytes, std::string>;
// Null/Invalid values for convenience.
static const u256 Invalid256 = ~(u256)0;
static const bytes NullBytes;
/// Logging
class NullOutputStream
{
public:
template <class T> NullOutputStream& operator<<(T const&) { return *this; }
};
extern std::map<std::type_info const*, bool> g_logOverride;
struct ThreadLocalLogName
{
ThreadLocalLogName(std::string _name) { m_name.reset(new std::string(_name)); };
boost::thread_specific_ptr<std::string> m_name;
};
extern ThreadLocalLogName t_logThreadName;
inline void setThreadName(char const* _n) { t_logThreadName.m_name.reset(new std::string(_n)); }
struct LogChannel { static const char* name() { return " "; } static const int verbosity = 1; };
struct LeftChannel: public LogChannel { static const char* name() { return "<<<"; } };
struct RightChannel: public LogChannel { static const char* name() { return ">>>"; } };
struct WarnChannel: public LogChannel { static const char* name() { return "!!!"; } static const int verbosity = 0; };
struct NoteChannel: public LogChannel { static const char* name() { return "***"; } };
struct DebugChannel: public LogChannel { static const char* name() { return "---"; } static const int verbosity = 0; };
extern int g_logVerbosity;
extern std::function<void(std::string const&, char const*)> g_logPost;
void simpleDebugOut(std::string const&, char const* );
template <class Id, bool _AutoSpacing = true>
class LogOutputStream
{
public:
LogOutputStream(bool _term = true)
{
std::type_info const* i = &typeid(Id);
auto it = g_logOverride.find(i);
if ((it != g_logOverride.end() && it->second == true) || (it == g_logOverride.end() && Id::verbosity <= g_logVerbosity))
{
time_t rawTime = std::chrono::system_clock::to_time_t(std::chrono::system_clock::now());
char buf[24];
if (strftime(buf, 24, "%X", localtime(&rawTime)) == 0)
buf[0] = '\0'; // empty if case strftime fails
sstr << Id::name() << " [ " << buf << " | " << *(t_logThreadName.m_name.get()) << (_term ? " ] " : "");
}
}
~LogOutputStream() { if (Id::verbosity <= g_logVerbosity) g_logPost(sstr.str(), Id::name()); }
template <class T> LogOutputStream& operator<<(T const& _t) { if (Id::verbosity <= g_logVerbosity) { if (_AutoSpacing && sstr.str().size() && sstr.str().back() != ' ') sstr << " "; sstr << _t; } return *this; }
std::stringstream sstr;
};
// Dirties the global namespace, but oh so convenient...
#define cnote eth::LogOutputStream<eth::NoteChannel, true>()
#define cwarn eth::LogOutputStream<eth::WarnChannel, true>()
#define ndebug if (true) {} else eth::NullOutputStream()
#define nlog(X) if (true) {} else eth::NullOutputStream()
#define nslog(X) if (true) {} else eth::NullOutputStream()
#if NDEBUG
#define cdebug ndebug
#else
#define cdebug eth::LogOutputStream<eth::DebugChannel, true>()
#endif
#if NLOG
#define clog(X) nlog(X)
#define cslog(X) nslog(X)
#else
#define clog(X) eth::LogOutputStream<X, true>()
#define cslog(X) eth::LogOutputStream<X, false>()
#endif
/// User-friendly string representation of the amount _b in wei.
std::string formatBalance(u256 _b);
/// Converts arbitrary value to string representation using std::stringstream.
template <class _T>
std::string toString(_T const& _t)
{
std::ostringstream o;
o << _t;
return o.str();
}
/// Converts byte array to a string containing the same (binary) data. Unless
/// the byte array happens to contain ASCII data, this won't be printable.
inline std::string asString(bytes const& _b)
{
return std::string((char const*)_b.data(), (char const*)(_b.data() + _b.size()));
}
/// Converts a string to a byte array containing the string's (byte) data.
inline bytes asBytes(std::string const& _b)
{
return bytes((byte const*)_b.data(), (byte const*)(_b.data() + _b.size()));
}
/// Trims a given number of elements from the front of a collection.
/// Only works for POD element types.
template <class _T>
void trimFront(_T& _t, uint _elements)
{
static_assert(std::is_pod<typename _T::value_type>::value, "");
memmove(_t.data(), _t.data() + _elements, (_t.size() - _elements) * sizeof(_t[0]));
_t.resize(_t.size() - _elements);
}
/// Pushes an element on to the front of a collection.
/// Only works for POD element types.
template <class _T, class _U>
void pushFront(_T& _t, _U _e)
{
static_assert(std::is_pod<typename _T::value_type>::value, "");
_t.push_back(_e);
memmove(_t.data() + 1, _t.data(), (_t.size() - 1) * sizeof(_e));
_t[0] = _e;
}
/// Creates a random, printable, word.
std::string randomWord();
/// Escapes a string into the C-string representation.
/// @p _all if true will escape all characters, not just the unprintable ones.
std::string escaped(std::string const& _s, bool _all = true);
/// Converts a (printable) ASCII hex character into the correspnding integer value.
/// @example fromHex('A') == 10 && fromHex('f') == 15 && fromHex('5') == 5
int fromHex(char _i);
/// Converts a string into the big-endian base-16 stream of integers (NOT ASCII).
/// @example toHex("A")[0] == 4 && toHex("A")[1] == 1
bytes toHex(std::string const& _s);
/// Converts a templated integer value to the big-endian byte-stream represented on a templated collection.
/// The size of the collection object will be unchanged. If it is too small, it will not represent the
/// value properly, if too big then the additional elements will be zeroed out.
/// @a _Out will typically be either std::string or bytes.
/// @a _T will typically by uint, u160, u256 or bigint.
template <class _T, class _Out>
inline void toBigEndian(_T _val, _Out& o_out)
{
for (auto i = o_out.size(); i-- != 0; _val >>= 8)
o_out[i] = (typename _Out::value_type)(uint8_t)_val;
}
/// Converts a big-endian byte-stream represented on a templated collection to a templated integer value.
/// @a _In will typically be either std::string or bytes.
/// @a _T will typically by uint, u160, u256 or bigint.
template <class _T, class _In>
inline _T fromBigEndian(_In const& _bytes)
{
_T ret = 0;
for (auto i: _bytes)
ret = (ret << 8) | (byte)(typename std::make_unsigned<typename _In::value_type>::type)i;
return ret;
}
/// Convenience functions for toBigEndian
inline std::string toBigEndianString(u256 _val) { std::string ret(32, '\0'); toBigEndian(_val, ret); return ret; }
inline std::string toBigEndianString(u160 _val) { std::string ret(20, '\0'); toBigEndian(_val, ret); return ret; }
inline bytes toBigEndian(u256 _val) { bytes ret(32); toBigEndian(_val, ret); return ret; }
inline bytes toBigEndian(u160 _val) { bytes ret(20); toBigEndian(_val, ret); return ret; }
/// Convenience function for toBigEndian.
/// @returns a string just big enough to represent @a _val.
template <class _T>
inline std::string toCompactBigEndianString(_T _val)
{
int i = 0;
for (_T v = _val; v; ++i, v >>= 8) {}
std::string ret(i, '\0');
toBigEndian(_val, ret);
return ret;
}
/// Determines the length of the common prefix of the two collections given.
/// @returns the number of elements both @a _t and @a _u share, in order, at the beginning.
/// @example commonPrefix("Hello world!", "Hello, world!") == 5
template <class _T, class _U>
uint commonPrefix(_T const& _t, _U const& _u)
{
uint s = std::min<uint>(_t.size(), _u.size());
for (uint i = 0;; ++i)
if (i == s || _t[i] != _u[i])
return i;
return s;
}
/// Convert the given value into h160 (160-bit unsigned integer) using the right 20 bytes.
inline h160 right160(h256 const& _t)
{
h160 ret;
memcpy(ret.data(), _t.data() + 12, 20);
return ret;
}
/// Convert the given value into h160 (160-bit unsigned integer) using the left 20 bytes.
inline h160 left160(h256 const& _t)
{
h160 ret;
memcpy(&ret[0], _t.data(), 20);
return ret;
}
/// Convert the given value into u160 (160-bit unsigned integer) by taking the lowest order 160-bits and discarding the rest.
inline u160 low160(u256 const& _t)
{
return (u160)(_t & ((((u256)1) << 160) - 1));
}
inline u160 low160(bigint const& _t)
{
return (u160)(_t & ((((bigint)1) << 160) - 1));
}
/// Convert the given value into u160 (160-bit unsigned integer) by taking the lowest order 160-bits and discarding the rest.
inline u160 high160(u256 const& _t)
{
return (u160)(_t >> 96);
}
/// Concatenate two vectors of elements. _T must be POD.
template <class _T>
inline std::vector<_T>& operator+=(std::vector<typename std::enable_if<std::is_pod<_T>::value, _T>::type>& _a, std::vector<_T> const& _b)
{
auto s = _a.size();
_a.resize(_a.size() + _b.size());
memcpy(_a.data() + s, _b.data(), _b.size() * sizeof(_T));
return _a;
}
/// Concatenate two vectors of elements. _T must be POD.
template <class _T>
inline std::vector<_T> operator+(std::vector<typename std::enable_if<std::is_pod<_T>::value, _T>::type> const& _a, std::vector<_T> const& _b)
{
std::vector<_T> ret(_a);
return ret += _b;
}
/// SHA-3 convenience routines.
void sha3(bytesConstRef _input, bytesRef _output);
std::string sha3(std::string const& _input, bool _hex);
bytes sha3Bytes(bytesConstRef _input);
inline bytes sha3Bytes(std::string const& _input) { return sha3Bytes((std::string*)&_input); }
inline bytes sha3Bytes(bytes const& _input) { return sha3Bytes((bytes*)&_input); }
h256 sha3(bytesConstRef _input);
inline h256 sha3(bytes const& _input) { return sha3(bytesConstRef((bytes*)&_input)); }
inline h256 sha3(std::string const& _input) { return sha3(bytesConstRef(_input)); }
/// Get information concerning the currency denominations.
std::vector<std::pair<u256, std::string>> const& units();
/// Convert a private key into the public key equivalent.
/// @returns 0 if it's not a valid private key.
Address toAddress(h256 _private);
class KeyPair
{
public:
KeyPair() {}
KeyPair(Secret _k);
static KeyPair create();
Secret const& secret() const { return m_secret; }
Secret const& sec() const { return m_secret; }
Public const& pub() const { return m_public; }
Address const& address() const { return m_address; }
private:
Secret m_secret;
Public m_public;
Address m_address;
};
static const u256 Uether = ((((u256(1000000000) * 1000000000) * 1000000000) * 1000000000) * 1000000000) * 1000000000;
static const u256 Vether = ((((u256(1000000000) * 1000000000) * 1000000000) * 1000000000) * 1000000000) * 1000000;
static const u256 Dether = ((((u256(1000000000) * 1000000000) * 1000000000) * 1000000000) * 1000000000) * 1000;
static const u256 Nether = (((u256(1000000000) * 1000000000) * 1000000000) * 1000000000) * 1000000000;
static const u256 Yether = (((u256(1000000000) * 1000000000) * 1000000000) * 1000000000) * 1000000;
static const u256 Zether = (((u256(1000000000) * 1000000000) * 1000000000) * 1000000000) * 1000;
static const u256 Eether = ((u256(1000000000) * 1000000000) * 1000000000) * 1000000000;
static const u256 Pether = ((u256(1000000000) * 1000000000) * 1000000000) * 1000000;
static const u256 Tether = ((u256(1000000000) * 1000000000) * 1000000000) * 1000;
static const u256 Gether = (u256(1000000000) * 1000000000) * 1000000000;
static const u256 Mether = (u256(1000000000) * 1000000000) * 1000000;
static const u256 Kether = (u256(1000000000) * 1000000000) * 1000;
static const u256 ether = u256(1000000000) * 1000000000;
static const u256 finney = u256(1000000000) * 1000000;
static const u256 szabo = u256(1000000000) * 1000;
static const u256 Gwei = u256(1000000000);
static const u256 Mwei = u256(1000000);
static const u256 Kwei = u256(1000);
static const u256 wei = u256(1);
// Stream IO
template <class S, class T> struct StreamOut { static S& bypass(S& _out, T const& _t) { _out << _t; return _out; } };
template <class S> struct StreamOut<S, uint8_t> { static S& bypass(S& _out, uint8_t const& _t) { _out << (int)_t; return _out; } };
template <class S, class T>
inline S& streamout(S& _out, std::vector<T> const& _e)
{
_out << "[";
if (!_e.empty())
{
StreamOut<S, T>::bypass(_out, _e.front());
for (auto i = ++_e.begin(); i != _e.end(); ++i)
StreamOut<S, T>::bypass(_out << ",", *i);
}
_out << "]";
return _out;
}
template <class T> inline std::ostream& operator<<(std::ostream& _out, std::vector<T> const& _e) { streamout(_out, _e); return _out; }
template <class S, class T, unsigned Z>
inline S& streamout(S& _out, std::array<T, Z> const& _e)
{
_out << "[";
if (!_e.empty())
{
StreamOut<S, T>::bypass(_out, _e.front());
auto i = _e.begin();
for (++i; i != _e.end(); ++i)
StreamOut<S, T>::bypass(_out << ",", *i);
}
_out << "]";
return _out;
}
template <class T, unsigned Z> inline std::ostream& operator<<(std::ostream& _out, std::array<T, Z> const& _e) { streamout(_out, _e); return _out; }
template <class S, class T, unsigned long Z>
inline S& streamout(S& _out, std::array<T, Z> const& _e)
{
_out << "[";
if (!_e.empty())
{
StreamOut<S, T>::bypass(_out, _e.front());
auto i = _e.begin();
for (++i; i != _e.end(); ++i)
StreamOut<S, T>::bypass(_out << ",", *i);
}
_out << "]";
return _out;
}
template <class T, unsigned long Z> inline std::ostream& operator<<(std::ostream& _out, std::array<T, Z> const& _e) { streamout(_out, _e); return _out; }
template <class S, class T>
inline S& streamout(S& _out, std::list<T> const& _e)
{
_out << "[";
if (!_e.empty())
{
_out << _e.front();
for (auto i = ++_e.begin(); i != _e.end(); ++i)
_out << "," << *i;
}
_out << "]";
return _out;
}
template <class T> inline std::ostream& operator<<(std::ostream& _out, std::list<T> const& _e) { streamout(_out, _e); return _out; }
template <class S, class T, class U>
inline S& streamout(S& _out, std::pair<T, U> const& _e)
{
_out << "(" << _e.first << "," << _e.second << ")";
return _out;
}
template <class T, class U> inline std::ostream& operator<<(std::ostream& _out, std::pair<T, U> const& _e) { streamout(_out, _e); return _out; }
template <class S, class T1, class T2, class T3>
inline S& streamout(S& _out, std::tuple<T1, T2, T3> const& _t)
{
_out << "(" << std::get<0>(_t) << "," << std::get<1>(_t) << "," << std::get<2>(_t) << ")";
return _out;
}
template <class T1, class T2, class T3> inline std::ostream& operator<<(std::ostream& _out, std::tuple<T1, T2, T3> const& _e) { streamout(_out, _e); return _out; }
template <class S, class T, class U>
S& streamout(S& _out, std::map<T, U> const& _v)
{
if (_v.empty())
return _out << "{}";
int i = 0;
for (auto p: _v)
_out << (!(i++) ? "{ " : "; ") << p.first << " => " << p.second;
return _out << " }";
}
template <class T, class U> inline std::ostream& operator<<(std::ostream& _out, std::map<T, U> const& _e) { streamout(_out, _e); return _out; }
template <class S, class T, class U>
S& streamout(S& _out, std::unordered_map<T, U> const& _v)
{
if (_v.empty())
return _out << "{}";
int i = 0;
for (auto p: _v)
_out << (!(i++) ? "{ " : "; ") << p.first << " => " << p.second;
return _out << " }";
}
template <class T, class U> inline std::ostream& operator<<(std::ostream& _out, std::unordered_map<T, U> const& _e) { streamout(_out, _e); return _out; }
template <class S, class T>
S& streamout(S& _out, std::set<T> const& _v)
{
if (_v.empty())
return _out << "{}";
int i = 0;
for (auto p: _v)
_out << (!(i++) ? "{ " : ", ") << p;
return _out << " }";
}
template <class T> inline std::ostream& operator<<(std::ostream& _out, std::set<T> const& _e) { streamout(_out, _e); return _out; }
template <class S, class T>
S& streamout(S& _out, std::multiset<T> const& _v)
{
if (_v.empty())
return _out << "{}";
int i = 0;
for (auto p: _v)
_out << (!(i++) ? "{ " : ", ") << p;
return _out << " }";
}
template <class T> inline std::ostream& operator<<(std::ostream& _out, std::multiset<T> const& _e) { streamout(_out, _e); return _out; }
template <class S, class T, class U>
S& streamout(S& _out, std::multimap<T, U> const& _v)
{
if (_v.empty())
return _out << "{}";
T l;
int i = 0;
for (auto p: _v)
if (!(i++))
_out << "{ " << (l = p.first) << " => " << p.second;
else if (l == p.first)
_out << ", " << p.second;
else
_out << "; " << (l = p.first) << " => " << p.second;
return _out << " }";
}
template <class T, class U> inline std::ostream& operator<<(std::ostream& _out, std::multimap<T, U> const& _e) { streamout(_out, _e); return _out; }
template <class _S, class _T> _S& operator<<(_S& _out, std::shared_ptr<_T> const& _p) { if (_p) _out << "@" << (*_p); else _out << "nullptr"; return _out; }
bytes contents(std::string const& _file);
void writeFile(std::string const& _file, bytes const& _data);
}
namespace std
{
// forward std::hash<eth::h256> to eth::h256::hash
template<> struct hash<eth::h256>: eth::h256::hash {};
}