You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

441 lines
15 KiB

/*
This file is part of cpp-ethereum.
cpp-ethereum is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
cpp-ethereum is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with cpp-ethereum. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file State.h
* @author Gav Wood <i@gavwood.com>
* @date 2014
*/
#pragma once
#include <array>
#include <map>
#include <unordered_map>
#include "Common.h"
#include "RLP.h"
#include "TransactionQueue.h"
#include "Exceptions.h"
#include "BlockInfo.h"
#include "AddressState.h"
#include "Transaction.h"
#include "TrieDB.h"
#include "FeeStructure.h"
#include "Dagger.h"
#include "ExtVMFace.h"
namespace eth
{
class BlockChain;
extern u256 c_genesisDifficulty;
std::map<Address, AddressState> const& genesisState();
static const std::map<u256, u256> EmptyMapU256U256;
static const bytes EmptyBytes;
struct StateChat: public LogChannel { static const char* name() { return "=S="; } static const int verbosity = 4; };
class VM;
class ExtVM;
class State;
class Executive
{
public:
Executive(State& _s): m_s(_s) {}
~Executive();
void setup(bytesConstRef _transaction);
void create(Address _txSender, u256 _endowment, u256 _gasPrice, u256 _gas, bytesConstRef _code, bytesConstRef _init, Address _originAddress);
void call(Address _myAddress, Address _txSender, u256 _txValue, u256 _gasPrice, bytesConstRef _txData, u256 _gas, Address _originAddress);
bool go(uint64_t _steps = (unsigned)-1);
void finalize();
u256 gas() const;
bytesConstRef out() const { return m_out; }
h160 newAddress() const { return m_newAddress; }
VM const& vm() const { return *m_vm; }
State const& state() const { return m_s; }
ExtVM const& ext() const { return *m_ext; }
private:
State& m_s;
ExtVM* m_ext = nullptr; // TODO: make safe.
VM* m_vm = nullptr;
bytesConstRef m_out;
Address m_newAddress;
Transaction m_t;
u256 m_startGas;
u256 m_endGas;
};
/**
* @brief Model of the current state of the ledger.
* Maintains current ledger (m_current) as a fast hash-map. This is hashed only when required (i.e. to create or verify a block).
* Should maintain ledger as of last N blocks, also, in case we end up on the wrong branch.
*/
class State
{
template <unsigned T> friend class UnitTest;
friend class ExtVM;
friend class Executive;
public:
/// Construct state object.
State(Address _coinbaseAddress = Address(), Overlay const& _db = Overlay());
/// Copy state object.
State(State const& _s);
/// Copy state object.
State& operator=(State const& _s);
/// Set the coinbase address for any transactions we do.
/// This causes a complete reset of current block.
void setAddress(Address _coinbaseAddress) { m_ourAddress = _coinbaseAddress; resetCurrent(); }
Address address() const { return m_ourAddress; }
/// Open a DB - useful for passing into the constructor & keeping for other states that are necessary.
static Overlay openDB(std::string _path, bool _killExisting = false);
static Overlay openDB(bool _killExisting = false) { return openDB(std::string(), _killExisting); }
/// @returns the set containing all addresses currently in use in Ethereum.
std::map<Address, u256> addresses() const;
/// Cancels transactions and rolls back the state to the end of the previous block.
/// @warning This will only work for on any transactions after you called the last commitToMine().
/// It's one or the other.
void rollback() { m_cache.clear(); }
/// Prepares the current state for mining.
/// Commits all transactions into the trie, compiles uncles and transactions list, applies all
/// rewards and populates the current block header with the appropriate hashes.
/// The only thing left to do after this is to actually mine().
///
/// This may be called multiple times and without issue, however, until the current state is cleared,
/// calls after the first are ignored.
void commitToMine(BlockChain const& _bc);
/// Attempt to find valid nonce for block that this state represents.
/// @param _msTimeout Timeout before return in milliseconds.
/// @returns a non-empty byte array containing the block if it got lucky. In this case, call blockData()
/// to get the block if you need it later.
MineInfo mine(uint _msTimeout = 1000);
/// Get the complete current block, including valid nonce.
/// Only valid after mine() returns true.
bytes const& blockData() const { return m_currentBytes; }
/// Sync our state with the block chain.
/// This basically involves wiping ourselves if we've been superceded and rebuilding from the transaction queue.
bool sync(BlockChain const& _bc);
/// Sync with the block chain, but rather than synching to the latest block, instead sync to the given block.
bool sync(BlockChain const& _bc, h256 _blockHash);
/// Sync our transactions, killing those from the queue that we have and assimilating those that we don't.
bool sync(TransactionQueue& _tq);
/// Like sync but only operate on _tq, killing the invalid/old ones.
bool cull(TransactionQueue& _tq) const;
/// Execute a given transaction.
/// This will append @a _t to the transaction list and change the state accordingly.
void execute(bytes const& _rlp) { return execute(&_rlp); }
void execute(bytesConstRef _rlp);
/// Check if the address is a valid normal (non-contract) account address.
bool isNormalAddress(Address _address) const;
/// Check if the address is a valid contract's address.
bool isContractAddress(Address _address) const;
/// Get an account's balance.
/// @returns 0 if the address has never been used.
u256 balance(Address _id) const;
/// Add some amount to balance.
/// Will initialise the address if it has never been used.
void addBalance(Address _id, u256 _amount);
/** Subtract some amount from balance.
* @throws NotEnoughCash if balance of @a _id is less than @a _value (or has never been used).
* @note We use bigint here as we don't want any accidental problems with negative numbers.
*/
void subBalance(Address _id, bigint _value);
/// Get the value of a memory position of a contract.
/// @returns 0 if no contract exists at that address.
u256 contractStorage(Address _contract, u256 _memory) const;
/// Get the memory of a contract.
/// @returns std::map<u256, u256> if no contract exists at that address.
std::map<u256, u256> const& contractStorage(Address _contract) const;
/// Get the code of a contract.
/// @returns bytes() if no contract exists at that address.
bytes const& contractCode(Address _contract) const;
/// Note that the given address is sending a transaction and thus increment the associated ticker.
void noteSending(Address _id);
/// Get the number of transactions a particular address has sent (used for the transaction nonce).
/// @returns 0 if the address has never been used.
u256 transactionsFrom(Address _address) const;
/// The hash of the root of our state tree.
h256 rootHash() const { return m_state.root(); }
/// Get the list of pending transactions.
Transactions const& pending() const { return m_transactions; }
/// Execute all transactions within a given block.
/// @returns the additional total difficulty.
/// If the _grandParent is passed, it will check the validity of each of the uncles.
/// This might throw.
u256 playback(bytesConstRef _block, BlockInfo const& _bi, BlockInfo const& _parent, BlockInfo const& _grandParent, bool _fullCommit);
/// Get the fee associated for a contract created with the given data.
u256 createGas(uint _dataCount, u256 _gas = 0) const { return c_txDataGas * _dataCount + c_createGas + _gas; }
/// Get the fee associated for a normal transaction.
u256 callGas(uint _dataCount, u256 _gas = 0) const { return c_txDataGas * _dataCount + c_callGas + _gas; }
private:
/// Retrieve all information about a given address into the cache.
/// If _requireMemory is true, grab the full memory should it be a contract item.
/// If _forceCreate is true, then insert a default item into the cache, in the case it doesn't
/// exist in the DB.
void ensureCached(Address _a, bool _requireMemory, bool _forceCreate) const;
/// Retrieve all information about a given address into a cache.
void ensureCached(std::map<Address, AddressState>& _cache, Address _a, bool _requireMemory, bool _forceCreate) const;
/// Commit all changes waiting in the address cache to the DB.
void commit();
/// Execute the given block on our previous block. This will set up m_currentBlock first, then call the other playback().
/// Any failure will be critical.
u256 playback(bytesConstRef _block, bool _fullCommit);
/// Execute the given block, assuming it corresponds to m_currentBlock. If _grandParent is passed, it will be used to check the uncles.
/// Throws on failure.
u256 playback(bytesConstRef _block, BlockInfo const& _grandParent, bool _fullCommit);
// Two priviledged entry points for transaction processing used by the VM (these don't get added to the Transaction lists):
// We assume all instrinsic fees are paid up before this point.
/// Execute a contract-creation transaction.
h160 create(Address _txSender, u256 _endowment, u256 _gasPrice, u256* _gas, bytesConstRef _code, bytesConstRef _init, Address _originAddress = Address());
/// Execute a call.
/// @a _gas points to the amount of gas to use for the call, and will lower it accordingly.
/// @returns false if the call ran out of gas before completion. true otherwise.
bool call(Address _myAddress, Address _txSender, u256 _txValue, u256 _gasPrice, bytesConstRef _txData, u256* _gas, bytesRef _out, Address _originAddress = Address());
/// Sets m_currentBlock to a clean state, (i.e. no change from m_previousBlock).
void resetCurrent();
/// Finalise the block, applying the earned rewards.
void applyRewards(Addresses const& _uncleAddresses);
/// Unfinalise the block, unapplying the earned rewards.
void unapplyRewards(Addresses const& _uncleAddresses);
Overlay m_db; ///< Our overlay for the state tree.
TrieDB<Address, Overlay> m_state; ///< Our state tree, as an Overlay DB.
Transactions m_transactions; ///< The current list of transactions that we've included in the state.
std::set<h256> m_transactionSet; ///< The set of transaction hashes that we've included in the state.
mutable std::map<Address, AddressState> m_cache; ///< Our address cache. This stores the states of each address that has (or at least might have) been changed.
BlockInfo m_previousBlock; ///< The previous block's information.
BlockInfo m_currentBlock; ///< The current block's information.
bytes m_currentBytes; ///< The current block.
uint m_currentNumber;
bytes m_currentTxs;
bytes m_currentUncles;
Address m_ourAddress; ///< Our address (i.e. the address to which fees go).
Dagger m_dagger;
u256 m_blockReward;
static std::string c_defaultPath;
friend std::ostream& operator<<(std::ostream& _out, State const& _s);
};
class ExtVM: public ExtVMFace
{
public:
ExtVM(State& _s, Address _myAddress, Address _caller, Address _origin, u256 _value, u256 _gasPrice, bytesConstRef _data, bytesConstRef _code):
ExtVMFace(_myAddress, _caller, _origin, _value, _gasPrice, _data, _code, _s.m_previousBlock, _s.m_currentBlock, _s.m_currentNumber), m_s(_s), m_origCache(_s.m_cache)
{
m_s.ensureCached(_myAddress, true, true);
m_store = &(m_s.m_cache[_myAddress].memory());
}
u256 store(u256 _n)
{
auto i = m_store->find(_n);
return i == m_store->end() ? 0 : i->second;
}
void setStore(u256 _n, u256 _v)
{
if (_v)
(*m_store)[_n] = _v;
else
m_store->erase(_n);
}
h160 create(u256 _endowment, u256* _gas, bytesConstRef _code, bytesConstRef _init)
{
// Increment associated nonce for sender.
m_s.noteSending(myAddress);
return m_s.create(myAddress, _endowment, gasPrice, _gas, _code, _init, origin);
}
bool call(Address _receiveAddress, u256 _txValue, bytesConstRef _txData, u256* _gas, bytesRef _out)
{
return m_s.call(_receiveAddress, myAddress, _txValue, gasPrice, _txData, _gas, _out, origin);
}
u256 balance(Address _a) { return m_s.balance(_a); }
void subBalance(u256 _a) { m_s.subBalance(myAddress, _a); }
u256 txCount(Address _a) { return m_s.transactionsFrom(_a); }
void suicide(Address _a)
{
m_s.addBalance(_a, m_s.balance(myAddress));
m_s.m_cache[myAddress].kill();
}
void revert()
{
m_s.m_cache = m_origCache;
}
private:
State& m_s;
std::map<Address, AddressState> m_origCache;
std::map<u256, u256>* m_store;
};
inline std::ostream& operator<<(std::ostream& _out, State const& _s)
{
_out << "--- " << _s.rootHash() << std::endl;
std::set<Address> d;
for (auto const& i: TrieDB<Address, Overlay>(const_cast<Overlay*>(&_s.m_db), _s.rootHash()))
{
auto it = _s.m_cache.find(i.first);
if (it == _s.m_cache.end())
{
RLP r(i.second);
_out << "[ " << (r.itemCount() == 3 ? "CONTRACT] " : " NORMAL] ") << i.first << ": " << std::dec << r[1].toInt<u256>() << "@" << r[0].toInt<u256>();
if (r.itemCount() == 3)
{
_out << " *" << r[2].toHash<h256>();
TrieDB<h256, Overlay> memdb(const_cast<Overlay*>(&_s.m_db), r[2].toHash<h256>()); // promise we won't alter the overlay! :)
std::map<u256, u256> mem;
for (auto const& j: memdb)
{
_out << std::endl << " [" << j.first << ":" << toHex(j.second) << "]";
mem[j.first] = RLP(j.second).toInt<u256>();
}
_out << std::endl << mem;
}
_out << std::endl;
}
else
d.insert(i.first);
}
for (auto i: _s.m_cache)
if (i.second.type() == AddressType::Dead)
_out << "[XXX " << i.first << std::endl;
else
{
_out << (d.count(i.first) ? "[ ! " : "[ * ") << (i.second.type() == AddressType::Contract ? "CONTRACT] " : " NORMAL] ") << i.first << ": " << std::dec << i.second.nonce() << "@" << i.second.balance();
if (i.second.type() == AddressType::Contract)
{
if (i.second.isComplete())
{
_out << std::endl << i.second.memory();
}
else
{
_out << " *" << i.second.oldRoot();
TrieDB<h256, Overlay> memdb(const_cast<Overlay*>(&_s.m_db), i.second.oldRoot()); // promise we won't alter the overlay! :)
std::map<u256, u256> mem;
for (auto const& j: memdb)
{
_out << std::endl << " [" << j.first << ":" << toHex(j.second) << "]";
mem[j.first] = RLP(j.second).toInt<u256>();
}
_out << std::endl << mem;
}
}
_out << std::endl;
}
return _out;
}
template <class DB>
void commit(std::map<Address, AddressState> const& _cache, DB& _db, TrieDB<Address, DB>& _state)
{
for (auto const& i: _cache)
if (i.second.type() == AddressType::Dead)
_state.remove(i.first);
else
{
RLPStream s(i.second.type() == AddressType::Contract ? 3 : 2);
s << i.second.balance() << i.second.nonce();
if (i.second.type() == AddressType::Contract)
{
if (i.second.isComplete())
{
TrieDB<h256, DB> memdb(&_db);
memdb.init();
for (auto const& j: i.second.memory())
if (j.second)
memdb.insert(j.first, rlp(j.second));
s << memdb.root();
if (i.second.freshCode())
{
h256 ch = sha3(i.second.code());
_db.insert(ch, &i.second.code());
s << ch;
}
else
s << i.second.codeHash();
}
else
s << i.second.oldRoot() << i.second.codeHash();
}
_state.insert(i.first, &s.out());
}
}
}