You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
298 lines
9.5 KiB
298 lines
9.5 KiB
/*
|
|
This file is part of ethash.
|
|
|
|
ethash is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
ethash is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with cpp-ethereum. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
/** @file internal.c
|
|
* @author Tim Hughes <tim@twistedfury.com>
|
|
* @author Matthew Wampler-Doty
|
|
* @date 2015
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <inttypes.h>
|
|
#include <stddef.h>
|
|
#include "ethash.h"
|
|
#include "fnv.h"
|
|
#include "endian.h"
|
|
#include "internal.h"
|
|
#include "data_sizes.h"
|
|
|
|
#ifdef WITH_CRYPTOPP
|
|
|
|
#include "sha3_cryptopp.h"
|
|
|
|
#else
|
|
#include "sha3.h"
|
|
#endif // WITH_CRYPTOPP
|
|
|
|
size_t ethash_get_datasize(const uint32_t block_number) {
|
|
assert(block_number / EPOCH_LENGTH < 500);
|
|
return dag_sizes[block_number / EPOCH_LENGTH];
|
|
}
|
|
|
|
size_t ethash_get_cachesize(const uint32_t block_number) {
|
|
assert(block_number / EPOCH_LENGTH < 500);
|
|
return cache_sizes[block_number / EPOCH_LENGTH];
|
|
}
|
|
|
|
// Follows Sergio's "STRICT MEMORY HARD HASHING FUNCTIONS" (2014)
|
|
// https://bitslog.files.wordpress.com/2013/12/memohash-v0-3.pdf
|
|
// SeqMemoHash(s, R, N)
|
|
void static ethash_compute_cache_nodes(
|
|
node *const nodes,
|
|
ethash_params const *params,
|
|
const uint8_t seed[32]) {
|
|
assert((params->cache_size % sizeof(node)) == 0);
|
|
uint32_t const num_nodes = (uint32_t)(params->cache_size / sizeof(node));
|
|
|
|
SHA3_512(nodes[0].bytes, seed, 32);
|
|
|
|
for (unsigned i = 1; i != num_nodes; ++i) {
|
|
SHA3_512(nodes[i].bytes, nodes[i - 1].bytes, 64);
|
|
}
|
|
|
|
for (unsigned j = 0; j != CACHE_ROUNDS; j++) {
|
|
for (unsigned i = 0; i != num_nodes; i++) {
|
|
uint32_t const idx = nodes[i].words[0] % num_nodes;
|
|
node data;
|
|
data = nodes[(num_nodes - 1 + i) % num_nodes];
|
|
for (unsigned w = 0; w != NODE_WORDS; ++w)
|
|
{
|
|
data.words[w] ^= nodes[idx].words[w];
|
|
}
|
|
SHA3_512(nodes[i].bytes, data.bytes, sizeof(data));
|
|
}
|
|
}
|
|
|
|
// now perform endian conversion
|
|
#if BYTE_ORDER != LITTLE_ENDIAN
|
|
for (unsigned w = 0; w != (num_nodes*NODE_WORDS); ++w)
|
|
{
|
|
nodes->words[w] = fix_endian32(nodes->words[w]);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void ethash_mkcache(
|
|
ethash_cache *cache,
|
|
ethash_params const *params,
|
|
const uint8_t seed[32]) {
|
|
node *nodes = (node *) cache->mem;
|
|
ethash_compute_cache_nodes(nodes, params, seed);
|
|
}
|
|
|
|
void ethash_calculate_dag_item(
|
|
node *const ret,
|
|
const unsigned node_index,
|
|
const struct ethash_params *params,
|
|
const struct ethash_cache *cache) {
|
|
|
|
uint32_t num_parent_nodes = (uint32_t)(params->cache_size / sizeof(node));
|
|
node const *cache_nodes = (node const *) cache->mem;
|
|
node const *init = &cache_nodes[node_index % num_parent_nodes];
|
|
|
|
memcpy(ret, init, sizeof(node));
|
|
ret->words[0] ^= node_index;
|
|
SHA3_512(ret->bytes, ret->bytes, sizeof(node));
|
|
|
|
#if defined(_M_X64) && ENABLE_SSE
|
|
__m128i const fnv_prime = _mm_set1_epi32(FNV_PRIME);
|
|
__m128i xmm0 = ret->xmm[0];
|
|
__m128i xmm1 = ret->xmm[1];
|
|
__m128i xmm2 = ret->xmm[2];
|
|
__m128i xmm3 = ret->xmm[3];
|
|
#endif
|
|
|
|
for (unsigned i = 0; i != DAG_PARENTS; ++i)
|
|
{
|
|
uint32_t parent_index = ((node_index ^ i)*FNV_PRIME ^ ret->words[i % NODE_WORDS]) % num_parent_nodes;
|
|
node const *parent = &cache_nodes[parent_index];
|
|
|
|
#if defined(_M_X64) && ENABLE_SSE
|
|
{
|
|
xmm0 = _mm_mullo_epi32(xmm0, fnv_prime);
|
|
xmm1 = _mm_mullo_epi32(xmm1, fnv_prime);
|
|
xmm2 = _mm_mullo_epi32(xmm2, fnv_prime);
|
|
xmm3 = _mm_mullo_epi32(xmm3, fnv_prime);
|
|
xmm0 = _mm_xor_si128(xmm0, parent->xmm[0]);
|
|
xmm1 = _mm_xor_si128(xmm1, parent->xmm[1]);
|
|
xmm2 = _mm_xor_si128(xmm2, parent->xmm[2]);
|
|
xmm3 = _mm_xor_si128(xmm3, parent->xmm[3]);
|
|
|
|
// have to write to ret as values are used to compute index
|
|
ret->xmm[0] = xmm0;
|
|
ret->xmm[1] = xmm1;
|
|
ret->xmm[2] = xmm2;
|
|
ret->xmm[3] = xmm3;
|
|
}
|
|
#else
|
|
{
|
|
for (unsigned w = 0; w != NODE_WORDS; ++w) {
|
|
ret->words[w] = fnv_hash(ret->words[w], parent->words[w]);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
SHA3_512(ret->bytes, ret->bytes, sizeof(node));
|
|
}
|
|
|
|
void ethash_compute_full_data(
|
|
void *mem,
|
|
ethash_params const *params,
|
|
ethash_cache const *cache) {
|
|
assert((params->full_size % (sizeof(uint32_t) * MIX_WORDS)) == 0);
|
|
assert((params->full_size % sizeof(node)) == 0);
|
|
node *full_nodes = mem;
|
|
|
|
// now compute full nodes
|
|
for (unsigned n = 0; n != (params->full_size / sizeof(node)); ++n) {
|
|
ethash_calculate_dag_item(&(full_nodes[n]), n, params, cache);
|
|
}
|
|
}
|
|
|
|
static void ethash_hash(
|
|
ethash_return_value * ret,
|
|
node const *full_nodes,
|
|
ethash_cache const *cache,
|
|
ethash_params const *params,
|
|
const uint8_t header_hash[32],
|
|
const uint64_t nonce) {
|
|
|
|
assert((params->full_size % MIX_WORDS) == 0);
|
|
|
|
// pack hash and nonce together into first 40 bytes of s_mix
|
|
assert(sizeof(node)*8 == 512);
|
|
node s_mix[MIX_NODES + 1];
|
|
memcpy(s_mix[0].bytes, header_hash, 32);
|
|
|
|
#if BYTE_ORDER != LITTLE_ENDIAN
|
|
s_mix[0].double_words[4] = fix_endian64(nonce);
|
|
#else
|
|
s_mix[0].double_words[4] = nonce;
|
|
#endif
|
|
|
|
// compute sha3-512 hash and replicate across mix
|
|
SHA3_512(s_mix->bytes, s_mix->bytes, 40);
|
|
|
|
#if BYTE_ORDER != LITTLE_ENDIAN
|
|
for (unsigned w = 0; w != 16; ++w) {
|
|
s_mix[0].words[w] = fix_endian32(s_mix[0].words[w]);
|
|
}
|
|
#endif
|
|
|
|
node* const mix = s_mix + 1;
|
|
for (unsigned w = 0; w != MIX_WORDS; ++w) {
|
|
mix->words[w] = s_mix[0].words[w % NODE_WORDS];
|
|
}
|
|
|
|
unsigned const
|
|
page_size = sizeof(uint32_t) * MIX_WORDS,
|
|
num_full_pages = (unsigned)(params->full_size / page_size);
|
|
|
|
|
|
for (unsigned i = 0; i != ACCESSES; ++i)
|
|
{
|
|
uint32_t const index = ((s_mix->words[0] ^ i)*FNV_PRIME ^ mix->words[i % MIX_WORDS]) % num_full_pages;
|
|
|
|
for (unsigned n = 0; n != MIX_NODES; ++n)
|
|
{
|
|
const node * dag_node = &full_nodes[MIX_NODES * index + n];
|
|
|
|
if (!full_nodes) {
|
|
node tmp_node;
|
|
ethash_calculate_dag_item(&tmp_node, index * MIX_NODES + n, params, cache);
|
|
dag_node = &tmp_node;
|
|
}
|
|
|
|
#if defined(_M_X64) && ENABLE_SSE
|
|
{
|
|
__m128i fnv_prime = _mm_set1_epi32(FNV_PRIME);
|
|
__m128i xmm0 = _mm_mullo_epi32(fnv_prime, mix[n].xmm[0]);
|
|
__m128i xmm1 = _mm_mullo_epi32(fnv_prime, mix[n].xmm[1]);
|
|
__m128i xmm2 = _mm_mullo_epi32(fnv_prime, mix[n].xmm[2]);
|
|
__m128i xmm3 = _mm_mullo_epi32(fnv_prime, mix[n].xmm[3]);
|
|
mix[n].xmm[0] = _mm_xor_si128(xmm0, dag_node->xmm[0]);
|
|
mix[n].xmm[1] = _mm_xor_si128(xmm1, dag_node->xmm[1]);
|
|
mix[n].xmm[2] = _mm_xor_si128(xmm2, dag_node->xmm[2]);
|
|
mix[n].xmm[3] = _mm_xor_si128(xmm3, dag_node->xmm[3]);
|
|
}
|
|
#else
|
|
{
|
|
for (unsigned w = 0; w != NODE_WORDS; ++w) {
|
|
mix[n].words[w] = fnv_hash(mix[n].words[w], dag_node->words[w]);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
}
|
|
|
|
// compress mix
|
|
for (unsigned w = 0; w != MIX_WORDS; w += 4)
|
|
{
|
|
uint32_t reduction = mix->words[w+0];
|
|
reduction = reduction*FNV_PRIME ^ mix->words[w+1];
|
|
reduction = reduction*FNV_PRIME ^ mix->words[w+2];
|
|
reduction = reduction*FNV_PRIME ^ mix->words[w+3];
|
|
mix->words[w/4] = reduction;
|
|
}
|
|
|
|
#if BYTE_ORDER != LITTLE_ENDIAN
|
|
for (unsigned w = 0; w != MIX_WORDS/4; ++w) {
|
|
mix->words[w] = fix_endian32(mix->words[w]);
|
|
}
|
|
#endif
|
|
|
|
memcpy(ret->mix_hash, mix->bytes, 32);
|
|
// final Keccak hash
|
|
SHA3_256(ret->result, s_mix->bytes, 64+32); // Keccak-256(s + compressed_mix)
|
|
}
|
|
|
|
void ethash_quick_hash(
|
|
uint8_t return_hash[32],
|
|
const uint8_t header_hash[32],
|
|
const uint64_t nonce,
|
|
const uint8_t mix_hash[32]) {
|
|
|
|
uint8_t buf[64+32];
|
|
memcpy(buf, header_hash, 32);
|
|
#if BYTE_ORDER != LITTLE_ENDIAN
|
|
nonce = fix_endian64(nonce);
|
|
#endif
|
|
memcpy(&(buf[32]), &nonce, 8);
|
|
SHA3_512(buf, buf, 40);
|
|
memcpy(&(buf[64]), mix_hash, 32);
|
|
SHA3_256(return_hash, buf, 64+32);
|
|
}
|
|
|
|
int ethash_quick_check_difficulty(
|
|
const uint8_t header_hash[32],
|
|
const uint64_t nonce,
|
|
const uint8_t mix_hash[32],
|
|
const uint8_t difficulty[32]) {
|
|
|
|
uint8_t return_hash[32];
|
|
ethash_quick_hash(return_hash, header_hash, nonce, mix_hash);
|
|
return ethash_check_difficulty(return_hash, difficulty);
|
|
}
|
|
|
|
void ethash_full(ethash_return_value * ret, void const *full_mem, ethash_params const *params, const uint8_t previous_hash[32], const uint64_t nonce) {
|
|
ethash_hash(ret, (node const *) full_mem, NULL, params, previous_hash, nonce);
|
|
}
|
|
|
|
void ethash_light(ethash_return_value * ret, ethash_cache const *cache, ethash_params const *params, const uint8_t previous_hash[32], const uint64_t nonce) {
|
|
ethash_hash(ret, NULL, cache, params, previous_hash, nonce);
|
|
}
|