You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

1115 lines
32 KiB

/*
This file is part of cpp-ethereum.
cpp-ethereum is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
cpp-ethereum is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with cpp-ethereum. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file PeerNetwork.cpp
* @authors:
* Gav Wood <i@gavwood.com>
* Eric Lombrozo <elombrozo@gmail.com>
* @date 2014
*/
#include <sys/types.h>
#ifdef _WIN32
// winsock is already included
// #include <winsock.h>
#else
#include <ifaddrs.h>
#endif
#include <chrono>
#include <thread>
#include "Exceptions.h"
#include "Common.h"
#include "BlockChain.h"
#include "BlockInfo.h"
#include "TransactionQueue.h"
#include "UPnP.h"
#include "PeerNetwork.h"
using namespace std;
using namespace eth;
#define clogS(X) eth::LogOutputStream<X, true>(false) << "| " << std::setw(2) << m_socket.native_handle() << "] "
static const int c_protocolVersion = 4;
static const eth::uint c_maxHashes = 32; ///< Maximum number of hashes GetChain will ever send.
static const eth::uint c_maxBlocks = 32; ///< Maximum number of blocks Blocks will ever send. BUG: if this gets too big (e.g. 2048) stuff starts going wrong.
static const eth::uint c_maxBlocksAsk = 256; ///< Maximum number of blocks we ask to receive in Blocks (when using GetChain).
// Addresses we will skip during network interface discovery
// Use a vector as the list is small
// Why this and not names?
// Under MacOSX loopback (127.0.0.1) can be named lo0 and br0 are bridges (0.0.0.0)
static const vector<bi::address> c_rejectAddresses = {
{bi::address_v4::from_string("127.0.0.1")},
{bi::address_v6::from_string("::1")},
{bi::address_v4::from_string("0.0.0.0")},
{bi::address_v6::from_string("::")}
};
// Helper function to determine if an address falls within one of the reserved ranges
// For V4:
// Class A "10.*", Class B "172.[16->31].*", Class C "192.168.*"
// Not implemented yet for V6
bool eth::isPrivateAddress(bi::address _addressToCheck)
{
if (_addressToCheck.is_v4())
{
bi::address_v4 v4Address = _addressToCheck.to_v4();
bi::address_v4::bytes_type bytesToCheck = v4Address.to_bytes();
if (bytesToCheck[0] == 10 || bytesToCheck[0] == 127)
return true;
if (bytesToCheck[0] == 172 && (bytesToCheck[1] >= 16 && bytesToCheck[1] <=31))
return true;
if (bytesToCheck[0] == 192 && bytesToCheck[1] == 168)
return true;
}
return false;
}
PeerSession::PeerSession(PeerServer* _s, bi::tcp::socket _socket, uint _rNId, bi::address _peerAddress, short _peerPort):
m_server(_s),
m_socket(std::move(_socket)),
m_reqNetworkId(_rNId),
m_listenPort(_peerPort),
m_rating(0)
{
m_disconnect = std::chrono::steady_clock::time_point::max();
m_connect = std::chrono::steady_clock::now();
m_info = PeerInfo({"?", _peerAddress.to_string(), m_listenPort, std::chrono::steady_clock::duration(0)});
}
PeerSession::~PeerSession()
{
m_socket.close();
}
bi::tcp::endpoint PeerSession::endpoint() const
{
if (m_socket.is_open())
try {
return bi::tcp::endpoint(m_socket.remote_endpoint().address(), m_listenPort);
} catch (...){}
return bi::tcp::endpoint();
}
static std::string reasonOf(int _r)
{
switch (_r)
{
case DisconnectRequested: return "Disconnect was requested.";
case TCPError: return "Low-level TCP communication error.";
case BadProtocol: return "Data format error.";
case UselessPeer: return "Peer had no use for this node.";
case TooManyPeers: return "Peer had too many connections.";
case DuplicatePeer: return "Peer was already connected.";
case WrongGenesis: return "Disagreement over genesis block.";
case IncompatibleProtocol: return "Peer protocol versions are incompatible.";
case ClientQuit: return "Peer is exiting.";
default: return "Unknown reason.";
}
}
// TODO: BUG! 256 -> work out why things start to break with big packet sizes -> g.t. ~370 blocks.
bool PeerSession::interpret(RLP const& _r)
{
clogS(NetRight) << _r;
switch (_r[0].toInt<unsigned>())
{
case HelloPacket:
{
m_protocolVersion = _r[1].toInt<uint>();
m_networkId = _r[2].toInt<uint>();
auto clientVersion = _r[3].toString();
m_caps = _r[4].toInt<uint>();
m_listenPort = _r[5].toInt<short>();
m_id = _r[6].toHash<h512>();
clogS(NetMessageSummary) << "Hello: " << clientVersion << "V[" << m_protocolVersion << "/" << m_networkId << "]" << m_id.abridged() << showbase << hex << m_caps << dec << m_listenPort;
if (m_server->m_peers.count(m_id))
if (auto l = m_server->m_peers[m_id].lock())
if (l.get() != this && l->isOpen())
{
// Already connected.
cwarn << "Already have peer id" << m_id.abridged() << "at" << l->endpoint() << "rather than" << endpoint();
disconnect(DuplicatePeer);
return false;
}
if (m_protocolVersion != c_protocolVersion || m_networkId != m_reqNetworkId || !m_id)
{
disconnect(IncompatibleProtocol);
return false;
}
try
{ m_info = PeerInfo({clientVersion, m_socket.remote_endpoint().address().to_string(), m_listenPort, std::chrono::steady_clock::duration()}); }
catch (...)
{
disconnect(BadProtocol);
return false;
}
m_server->m_peers[m_id] = shared_from_this();
// Grab their block chain off them.
{
clogS(NetAllDetail) << "Want chain. Latest:" << m_server->m_latestBlockSent << ", number:" << m_server->m_chain->details(m_server->m_latestBlockSent).number;
unsigned count = std::min<unsigned>(c_maxHashes, m_server->m_chain->details(m_server->m_latestBlockSent).number + 1);
RLPStream s;
prep(s).appendList(2 + count);
s << GetChainPacket;
auto h = m_server->m_latestBlockSent;
for (unsigned i = 0; i < count; ++i, h = m_server->m_chain->details(h).parent)
{
clogS(NetAllDetail) << " " << i << ":" << h;
s << h;
}
s << c_maxBlocksAsk;
sealAndSend(s);
s.clear();
prep(s).appendList(1);
s << GetTransactionsPacket;
sealAndSend(s);
}
break;
}
case DisconnectPacket:
{
string reason = "Unspecified";
if (_r[1].isInt())
reason = reasonOf(_r[1].toInt<int>());
clogS(NetMessageSummary) << "Disconnect (reason: " << reason << ")";
if (m_socket.is_open())
clogS(NetNote) << "Closing " << m_socket.remote_endpoint();
else
clogS(NetNote) << "Remote closed.";
m_socket.close();
return false;
}
case PingPacket:
{
// clogS(NetMessageSummary) << "Ping";
RLPStream s;
sealAndSend(prep(s).appendList(1) << PongPacket);
break;
}
case PongPacket:
m_info.lastPing = std::chrono::steady_clock::now() - m_ping;
// clogS(NetMessageSummary) << "Latency: " << chrono::duration_cast<chrono::milliseconds>(m_lastPing).count() << " ms";
break;
case GetPeersPacket:
{
clogS(NetMessageSummary) << "GetPeers";
auto peers = m_server->potentialPeers();
RLPStream s;
prep(s).appendList(peers.size() + 1);
s << PeersPacket;
for (auto i: peers)
{
clogS(NetMessageDetail) << "Sending peer " << asHex(i.first.ref().cropped(0, 4)) << i.second;
s.appendList(3) << i.second.address().to_v4().to_bytes() << i.second.port() << i.first;
}
sealAndSend(s);
break;
}
case PeersPacket:
clogS(NetMessageSummary) << "Peers (" << dec << (_r.itemCount() - 1) << " entries)";
for (unsigned i = 1; i < _r.itemCount(); ++i)
{
bi::address_v4 peerAddress(_r[i][0].toArray<byte, 4>());
auto ep = bi::tcp::endpoint(peerAddress, _r[i][1].toInt<short>());
Public id = _r[i][2].toHash<Public>();
if (isPrivateAddress(peerAddress))
goto CONTINUE;
clogS(NetAllDetail) << "Checking: " << ep << "(" << asHex(id.ref().cropped(0, 4)) << ")";
// check that it's not us or one we already know:
if (id && (m_server->m_key.pub() == id || m_server->m_peers.count(id) || m_server->m_incomingPeers.count(id)))
goto CONTINUE;
// check that we're not already connected to addr:
if (!ep.port())
goto CONTINUE;
for (auto i: m_server->m_addresses)
if (ep.address() == i && ep.port() == m_server->listenPort())
goto CONTINUE;
for (auto i: m_server->m_peers)
if (shared_ptr<PeerSession> p = i.second.lock())
{
clogS(NetAllDetail) << " ...against " << p->endpoint();
if (p->m_socket.is_open() && p->endpoint() == ep)
goto CONTINUE;
}
for (auto i: m_server->m_incomingPeers)
if (i.second.first == ep)
goto CONTINUE;
m_server->m_incomingPeers[id] = make_pair(ep, 0);
m_server->m_freePeers.push_back(id);
clogS(NetMessageDetail) << "New peer: " << ep << "(" << id << ")";
CONTINUE:;
}
break;
case TransactionsPacket:
if (m_server->m_mode == NodeMode::PeerServer)
break;
clogS(NetMessageSummary) << "Transactions (" << dec << (_r.itemCount() - 1) << " entries)";
m_rating += _r.itemCount() - 1;
for (unsigned i = 1; i < _r.itemCount(); ++i)
{
m_server->m_incomingTransactions.push_back(_r[i].data().toBytes());
m_knownTransactions.insert(sha3(_r[i].data()));
}
break;
case BlocksPacket:
{
if (m_server->m_mode == NodeMode::PeerServer)
break;
clogS(NetMessageSummary) << "Blocks (" << dec << (_r.itemCount() - 1) << " entries)";
unsigned used = 0;
for (unsigned i = 1; i < _r.itemCount(); ++i)
{
auto h = sha3(_r[i].data());
if (!m_server->m_chain->details(h))
{
m_server->m_incomingBlocks.push_back(_r[i].data().toBytes());
m_knownBlocks.insert(h);
used++;
}
}
m_rating += used;
if (g_logVerbosity >= 3)
for (unsigned i = 1; i < _r.itemCount(); ++i)
{
auto h = sha3(_r[i].data());
BlockInfo bi(_r[i].data());
if (!m_server->m_chain->details(bi.parentHash) && !m_knownBlocks.count(bi.parentHash))
clogS(NetMessageDetail) << "Unknown parent " << bi.parentHash << " of block " << h;
else
clogS(NetMessageDetail) << "Known parent " << bi.parentHash << " of block " << h;
}
if (used) // we received some - check if there's any more
{
RLPStream s;
prep(s).appendList(3);
s << GetChainPacket;
s << sha3(_r[1].data());
s << c_maxBlocksAsk;
sealAndSend(s);
}
break;
}
case GetChainPacket:
{
if (m_server->m_mode == NodeMode::PeerServer)
break;
clogS(NetMessageSummary) << "GetChain (" << (_r.itemCount() - 2) << " hashes, " << (_r[_r.itemCount() - 1].toInt<bigint>()) << ")";
// ********************************************************************
// NEEDS FULL REWRITE!
h256s parents;
parents.reserve(_r.itemCount() - 2);
for (unsigned i = 1; i < _r.itemCount() - 1; ++i)
parents.push_back(_r[i].toHash<h256>());
if (_r.itemCount() == 2)
break;
// return 2048 block max.
uint baseCount = (uint)min<bigint>(_r[_r.itemCount() - 1].toInt<bigint>(), c_maxBlocks);
clogS(NetMessageSummary) << "GetChain (" << baseCount << " max, from " << parents.front() << " to " << parents.back() << ")";
for (auto parent: parents)
{
auto h = m_server->m_chain->currentHash();
h256 latest = m_server->m_chain->currentHash();
uint latestNumber = 0;
uint parentNumber = 0;
RLPStream s;
if (m_server->m_chain->details(parent))
{
latestNumber = m_server->m_chain->details(latest).number;
parentNumber = m_server->m_chain->details(parent).number;
uint count = min<uint>(latestNumber - parentNumber, baseCount);
clogS(NetAllDetail) << "Requires " << dec << (latestNumber - parentNumber) << " blocks from " << latestNumber << " to " << parentNumber;
clogS(NetAllDetail) << latest << " - " << parent;
prep(s);
s.appendList(1 + count) << BlocksPacket;
uint endNumber = m_server->m_chain->details(parent).number;
uint startNumber = endNumber + count;
clogS(NetAllDetail) << "Sending " << dec << count << " blocks from " << startNumber << " to " << endNumber;
uint n = latestNumber;
for (; n > startNumber; n--, h = m_server->m_chain->details(h).parent) {}
for (uint i = 0; i < count; ++i, --n, h = m_server->m_chain->details(h).parent)
{
if (h == parent || n == endNumber)
{
cwarn << "BUG! Couldn't create the reply for GetChain!";
return true;
}
clogS(NetAllDetail) << " " << dec << i << " " << h;
s.appendRaw(m_server->m_chain->block(h));
}
clogS(NetAllDetail) << "Parent: " << h;
}
else if (parent != parents.back())
continue;
if (h != parent)
{
// not in the blockchain;
if (parent == parents.back())
{
// out of parents...
clogS(NetAllDetail) << "GetChain failed; not in chain";
// No good - must have been on a different branch.
s.clear();
prep(s).appendList(2) << NotInChainPacket << parents.back();
}
else
// still some parents left - try them.
continue;
}
// send the packet (either Blocks or NotInChain) & exit.
sealAndSend(s);
break;
// ********************************************************************
}
break;
}
case NotInChainPacket:
{
if (m_server->m_mode == NodeMode::PeerServer)
break;
h256 noGood = _r[1].toHash<h256>();
clogS(NetMessageSummary) << "NotInChain (" << noGood << ")";
if (noGood == m_server->m_chain->genesisHash())
{
clogS(NetWarn) << "Discordance over genesis block! Disconnect.";
disconnect(WrongGenesis);
}
else
{
unsigned count = std::min<unsigned>(c_maxHashes, m_server->m_chain->details(noGood).number);
RLPStream s;
prep(s).appendList(2 + count);
s << GetChainPacket;
auto h = m_server->m_chain->details(noGood).parent;
for (unsigned i = 0; i < count; ++i, h = m_server->m_chain->details(h).parent)
s << h;
s << c_maxBlocksAsk;
sealAndSend(s);
}
break;
}
case GetTransactionsPacket:
{
if (m_server->m_mode == NodeMode::PeerServer)
break;
m_requireTransactions = true;
break;
}
default:
break;
}
return true;
}
void PeerSession::ping()
{
RLPStream s;
sealAndSend(prep(s).appendList(1) << PingPacket);
m_ping = std::chrono::steady_clock::now();
}
RLPStream& PeerSession::prep(RLPStream& _s)
{
return _s.appendRaw(bytes(8, 0));
}
void PeerServer::seal(bytes& _b)
{
_b[0] = 0x22;
_b[1] = 0x40;
_b[2] = 0x08;
_b[3] = 0x91;
uint32_t len = _b.size() - 8;
_b[4] = (len >> 24) & 0xff;
_b[5] = (len >> 16) & 0xff;
_b[6] = (len >> 8) & 0xff;
_b[7] = len & 0xff;
}
void PeerSession::sealAndSend(RLPStream& _s)
{
bytes b;
_s.swapOut(b);
m_server->seal(b);
sendDestroy(b);
}
bool PeerSession::checkPacket(bytesConstRef _msg)
{
if (_msg.size() < 8)
return false;
if (!(_msg[0] == 0x22 && _msg[1] == 0x40 && _msg[2] == 0x08 && _msg[3] == 0x91))
return false;
uint32_t len = ((_msg[4] * 256 + _msg[5]) * 256 + _msg[6]) * 256 + _msg[7];
if (_msg.size() != len + 8)
return false;
RLP r(_msg.cropped(8));
if (r.actualSize() != len)
return false;
return true;
}
void PeerSession::sendDestroy(bytes& _msg)
{
clogS(NetLeft) << RLP(bytesConstRef(&_msg).cropped(8));
std::shared_ptr<bytes> buffer = std::make_shared<bytes>();
swap(*buffer, _msg);
if (!checkPacket(bytesConstRef(&*buffer)))
{
cwarn << "INVALID PACKET CONSTRUCTED!";
}
ba::async_write(m_socket, ba::buffer(*buffer), [=](boost::system::error_code ec, std::size_t length)
{
if (ec)
{
cwarn << "Error sending: " << ec.message();
dropped();
}
// cbug << length << " bytes written (EC: " << ec << ")";
});
}
void PeerSession::send(bytesConstRef _msg)
{
clogS(NetLeft) << RLP(_msg.cropped(8));
std::shared_ptr<bytes> buffer = std::make_shared<bytes>(_msg.toBytes());
if (!checkPacket(_msg))
{
cwarn << "INVALID PACKET CONSTRUCTED!";
}
ba::async_write(m_socket, ba::buffer(*buffer), [=](boost::system::error_code ec, std::size_t length)
{
if (ec)
{
cwarn << "Error sending: " << ec.message();
dropped();
}
// cbug << length << " bytes written (EC: " << ec << ")";
});
}
void PeerSession::dropped()
{
if (m_socket.is_open())
try {
clogS(NetNote) << "Closing " << m_socket.remote_endpoint();
m_socket.close();
}catch (...){}
for (auto i = m_server->m_peers.begin(); i != m_server->m_peers.end(); ++i)
if (i->second.lock().get() == this)
{
m_server->m_peers.erase(i);
break;
}
}
void PeerSession::disconnect(int _reason)
{
clogS(NetNote) << "Disconnecting (reason:" << reasonOf(_reason) << ")";
if (m_socket.is_open())
{
if (m_disconnect == chrono::steady_clock::time_point::max())
{
RLPStream s;
prep(s);
s.appendList(2) << DisconnectPacket << _reason;
sealAndSend(s);
m_disconnect = chrono::steady_clock::now();
}
else
dropped();
}
}
void PeerSession::start()
{
RLPStream s;
prep(s);
s.appendList(7) << HelloPacket << (uint)c_protocolVersion << (uint)m_server->m_requiredNetworkId << m_server->m_clientVersion << (m_server->m_mode == NodeMode::Full ? 0x07 : m_server->m_mode == NodeMode::PeerServer ? 0x01 : 0) << m_server->m_public.port() << m_server->m_key.pub();
sealAndSend(s);
ping();
doRead();
}
void PeerSession::doRead()
{
auto self(shared_from_this());
m_socket.async_read_some(boost::asio::buffer(m_data), [this, self](boost::system::error_code ec, std::size_t length)
{
if (ec)
{
cwarn << "Error reading: " << ec.message();
dropped();
}
else
{
try
{
m_incoming.resize(m_incoming.size() + length);
memcpy(m_incoming.data() + m_incoming.size() - length, m_data.data(), length);
while (m_incoming.size() > 8)
{
if (m_incoming[0] != 0x22 || m_incoming[1] != 0x40 || m_incoming[2] != 0x08 || m_incoming[3] != 0x91)
{
clogS(NetWarn) << "Out of alignment. Skipping: " << hex << showbase << (int)m_incoming[0] << dec;
memmove(m_incoming.data(), m_incoming.data() + 1, m_incoming.size() - 1);
m_incoming.resize(m_incoming.size() - 1);
}
else
{
uint32_t len = fromBigEndian<uint32_t>(bytesConstRef(m_incoming.data() + 4, 4));
uint32_t tlen = len + 8;
if (m_incoming.size() < tlen)
break;
// enough has come in.
// cerr << "Received " << len << ": " << asHex(bytesConstRef(m_incoming.data() + 8, len)) << endl;
auto data = bytesConstRef(m_incoming.data(), tlen);
if (!checkPacket(data))
{
cerr << "Received " << len << ": " << asHex(bytesConstRef(m_incoming.data() + 8, len)) << endl;
cwarn << "INVALID MESSAGE RECEIVED";
disconnect(BadProtocol);
}
else
{
RLP r(data.cropped(8));
if (!interpret(r))
{
// error
dropped();
return;
}
}
memmove(m_incoming.data(), m_incoming.data() + tlen, m_incoming.size() - tlen);
m_incoming.resize(m_incoming.size() - tlen);
}
}
doRead();
}
catch (Exception const& _e)
{
clogS(NetWarn) << "ERROR: " << _e.description();
dropped();
}
catch (std::exception const& _e)
{
clogS(NetWarn) << "ERROR: " << _e.what();
dropped();
}
}
});
}
PeerServer::PeerServer(std::string const& _clientVersion, BlockChain const& _ch, uint _networkId, short _port, NodeMode _m, string const& _publicAddress, bool _upnp):
m_clientVersion(_clientVersion),
m_mode(_m),
m_listenPort(_port),
m_chain(&_ch),
m_acceptor(m_ioService, bi::tcp::endpoint(bi::tcp::v4(), _port)),
m_socket(m_ioService),
m_key(KeyPair::create()),
m_requiredNetworkId(_networkId)
{
populateAddresses();
determinePublic(_publicAddress, _upnp);
ensureAccepting();
clog(NetNote) << "Id:" << asHex(m_key.address().ref().cropped(0, 4)) << "Mode: " << (_m == NodeMode::PeerServer ? "PeerServer" : "Full");
}
PeerServer::PeerServer(std::string const& _clientVersion, uint _networkId, NodeMode _m):
m_clientVersion(_clientVersion),
m_mode(_m),
m_listenPort(-1),
m_acceptor(m_ioService, bi::tcp::endpoint(bi::tcp::v4(), 0)),
m_socket(m_ioService),
m_key(KeyPair::create()),
m_requiredNetworkId(_networkId)
{
// populate addresses.
populateAddresses();
clog(NetNote) << "Id:" << asHex(m_key.address().ref().cropped(0, 4)) << "Mode: " << (m_mode == NodeMode::PeerServer ? "PeerServer" : "Full");
}
PeerServer::~PeerServer()
{
for (auto const& i: m_peers)
if (auto p = i.second.lock())
p->disconnect(ClientQuit);
delete m_upnp;
}
void PeerServer::determinePublic(string const& _publicAddress, bool _upnp)
{
if (_upnp)
try
{
m_upnp = new UPnP;
}
catch (NoUPnPDevice) {} // let m_upnp continue as null - we handle it properly.
bi::tcp::resolver r(m_ioService);
if (m_upnp && m_upnp->isValid() && m_peerAddresses.size())
{
clog(NetNote) << "External addr: " << m_upnp->externalIP();
int p = m_upnp->addRedirect(m_peerAddresses[0].to_string().c_str(), m_listenPort);
if (p)
clog(NetNote) << "Punched through NAT and mapped local port" << m_listenPort << "onto external port" << p << ".";
else
{
// couldn't map
clog(NetWarn) << "Couldn't punch through NAT (or no NAT in place). Assuming " << m_listenPort << " is local & external port.";
p = m_listenPort;
}
auto eip = m_upnp->externalIP();
if (eip == string("0.0.0.0") && _publicAddress.empty())
m_public = bi::tcp::endpoint(bi::address(), p);
else
{
m_public = bi::tcp::endpoint(bi::address::from_string(_publicAddress.empty() ? eip : _publicAddress), p);
m_addresses.push_back(m_public.address().to_v4());
}
}
else
{
// No UPnP - fallback on given public address or, if empty, the assumed peer address.
m_public = bi::tcp::endpoint(_publicAddress.size() ? bi::address::from_string(_publicAddress)
: m_peerAddresses.size() ? m_peerAddresses[0]
: bi::address(), m_listenPort);
m_addresses.push_back(m_public.address().to_v4());
}
}
void PeerServer::populateAddresses()
{
#ifdef _WIN32
WSAData wsaData;
if (WSAStartup(MAKEWORD(1, 1), &wsaData) != 0)
throw NoNetworking();
char ac[80];
if (gethostname(ac, sizeof(ac)) == SOCKET_ERROR)
{
clog(NetWarn) << "Error " << WSAGetLastError() << " when getting local host name.";
WSACleanup();
throw NoNetworking();
}
struct hostent* phe = gethostbyname(ac);
if (phe == 0)
{
clog(NetWarn) << "Bad host lookup.";
WSACleanup();
throw NoNetworking();
}
for (int i = 0; phe->h_addr_list[i] != 0; ++i)
{
struct in_addr addr;
memcpy(&addr, phe->h_addr_list[i], sizeof(struct in_addr));
char *addrStr = inet_ntoa(addr);
bi::address ad(bi::address::from_string(addrStr));
m_addresses.push_back(ad.to_v4());
bool isLocal = std::find(c_rejectAddresses.begin(), c_rejectAddresses.end(), ad) != c_rejectAddresses.end();
if (isLocal)
m_peerAddresses.push_back(ad.to_v4());
clog(NetNote) << "Address: " << ac << " = " << m_addresses.back() << (isLocal ? " [LOCAL]" : " [PEER]");
}
WSACleanup();
#else
ifaddrs* ifaddr;
if (getifaddrs(&ifaddr) == -1)
throw NoNetworking();
bi::tcp::resolver r(m_ioService);
for (ifaddrs* ifa = ifaddr; ifa; ifa = ifa->ifa_next)
{
if (!ifa->ifa_addr)
continue;
if (ifa->ifa_addr->sa_family == AF_INET)
{
char host[NI_MAXHOST];
if (getnameinfo(ifa->ifa_addr, sizeof(struct sockaddr_in), host, NI_MAXHOST, NULL, 0, NI_NUMERICHOST))
continue;
auto it = r.resolve({host, "30303"});
bi::tcp::endpoint ep = it->endpoint();
bi::address ad = ep.address();
m_addresses.push_back(ad.to_v4());
bool isLocal = std::find(c_rejectAddresses.begin(), c_rejectAddresses.end(), ad) != c_rejectAddresses.end();
if (!isLocal)
m_peerAddresses.push_back(ad.to_v4());
clog(NetNote) << "Address: " << host << " = " << m_addresses.back() << (isLocal ? " [LOCAL]" : " [PEER]");
}
}
freeifaddrs(ifaddr);
#endif
}
std::map<Public, bi::tcp::endpoint> PeerServer::potentialPeers()
{
std::map<Public, bi::tcp::endpoint> ret;
if (!m_public.address().is_unspecified())
ret.insert(make_pair(m_key.pub(), m_public));
for (auto i: m_peers)
if (auto j = i.second.lock())
{
auto ep = j->endpoint();
// Skip peers with a listen port of zero or are on a private network
bool peerOnNet = (j->m_listenPort != 0 && !isPrivateAddress(ep.address()));
if (peerOnNet && ep.port() && j->m_id)
ret.insert(make_pair(i.first, ep));
}
return ret;
}
void PeerServer::ensureAccepting()
{
if (m_accepting == false)
{
clog(NetNote) << "Listening on local port " << m_listenPort << " (public: " << m_public << ")";
m_accepting = true;
m_acceptor.async_accept(m_socket, [=](boost::system::error_code ec)
{
if (!ec)
try
{
try {
clog(NetNote) << "Accepted connection from " << m_socket.remote_endpoint();
} catch (...){}
bi::address remoteAddress = m_socket.remote_endpoint().address();
// Port defaults to 0 - we let the hello tell us which port the peer listens to
auto p = std::make_shared<PeerSession>(this, std::move(m_socket), m_requiredNetworkId, remoteAddress);
p->start();
}
catch (std::exception const& _e)
{
clog(NetWarn) << "ERROR: " << _e.what();
}
m_accepting = false;
if (m_mode == NodeMode::PeerServer || m_peers.size() < m_idealPeerCount * 2)
ensureAccepting();
});
}
}
void PeerServer::connect(std::string const& _addr, uint _port) noexcept
{
try
{
connect(bi::tcp::endpoint(bi::address::from_string(_addr), _port));
}
catch (exception const& e)
{
// Couldn't connect
clog(NetNote) << "Bad host " << _addr << " (" << e.what() << ")";
}
}
void PeerServer::connect(bi::tcp::endpoint const& _ep)
{
clog(NetNote) << "Attempting connection to " << _ep;
bi::tcp::socket* s = new bi::tcp::socket(m_ioService);
s->async_connect(_ep, [=](boost::system::error_code const& ec)
{
if (ec)
{
clog(NetNote) << "Connection refused to " << _ep << " (" << ec.message() << ")";
for (auto i = m_incomingPeers.begin(); i != m_incomingPeers.end(); ++i)
if (i->second.first == _ep && i->second.second < 3)
{
m_freePeers.push_back(i->first);
goto OK;
}
// for-else
clog(NetNote) << "Giving up.";
OK:;
}
else
{
auto p = make_shared<PeerSession>(this, std::move(*s), m_requiredNetworkId, _ep.address(), _ep.port());
clog(NetNote) << "Connected to " << p->endpoint();
p->start();
}
delete s;
});
}
bool PeerServer::sync()
{
bool ret = false;
if (isInitialised())
for (auto i = m_peers.begin(); i != m_peers.end();)
{
auto p = i->second.lock();
if (p && p->m_socket.is_open() &&
(p->m_disconnect == chrono::steady_clock::time_point::max() || chrono::steady_clock::now() - p->m_disconnect < chrono::seconds(1))) // kill old peers that should be disconnected.
++i;
else
{
i = m_peers.erase(i);
ret = true;
}
}
return ret;
}
bool PeerServer::ensureInitialised(BlockChain& _bc, TransactionQueue& _tq)
{
if (m_latestBlockSent == h256())
{
// First time - just initialise.
m_latestBlockSent = _bc.currentHash();
clog(NetNote) << "Initialising: latest=" << m_latestBlockSent;
for (auto const& i: _tq.transactions())
m_transactionsSent.insert(i.first);
m_lastPeersRequest = chrono::steady_clock::time_point::min();
return true;
}
return false;
}
bool PeerServer::sync(BlockChain& _bc, TransactionQueue& _tq, Overlay& _o)
{
bool ret = ensureInitialised(_bc, _tq);
if (sync())
ret = true;
if (m_mode == NodeMode::Full)
{
for (auto it = m_incomingTransactions.begin(); it != m_incomingTransactions.end(); ++it)
if (_tq.import(*it))
ret = true;
else
m_transactionsSent.insert(sha3(*it)); // if we already had the transaction, then don't bother sending it on.
m_incomingTransactions.clear();
// Send any new transactions.
for (auto j: m_peers)
if (auto p = j.second.lock())
{
bytes b;
uint n = 0;
for (auto const& i: _tq.transactions())
if ((!m_transactionsSent.count(i.first) && !p->m_knownTransactions.count(i.first)) || p->m_requireTransactions)
{
b += i.second;
++n;
m_transactionsSent.insert(i.first);
}
if (n)
{
RLPStream ts;
PeerSession::prep(ts);
ts.appendList(n + 1) << TransactionsPacket;
ts.appendRaw(b, n).swapOut(b);
seal(b);
p->send(&b);
}
p->m_knownTransactions.clear();
p->m_requireTransactions = false;
}
// Send any new blocks.
auto h = _bc.currentHash();
if (h != m_latestBlockSent)
{
// TODO: find where they diverge and send complete new branch.
RLPStream ts;
PeerSession::prep(ts);
ts.appendList(2) << BlocksPacket;
bytes b;
ts.appendRaw(_bc.block(_bc.currentHash())).swapOut(b);
seal(b);
for (auto j: m_peers)
if (auto p = j.second.lock())
{
if (!p->m_knownBlocks.count(_bc.currentHash()))
p->send(&b);
p->m_knownBlocks.clear();
}
}
m_latestBlockSent = h;
for (int accepted = 1, n = 0; accepted; ++n)
{
accepted = 0;
if (m_incomingBlocks.size())
for (auto it = prev(m_incomingBlocks.end());; --it)
{
try
{
_bc.import(*it, _o);
it = m_incomingBlocks.erase(it);
++accepted;
ret = true;
}
catch (UnknownParent)
{
// Don't (yet) know its parent. Leave it for later.
m_unknownParentBlocks.push_back(*it);
it = m_incomingBlocks.erase(it);
}
catch (...)
{
// Some other error - erase it.
it = m_incomingBlocks.erase(it);
}
if (it == m_incomingBlocks.begin())
break;
}
if (!n && accepted)
{
for (auto i: m_unknownParentBlocks)
m_incomingBlocks.push_back(i);
m_unknownParentBlocks.clear();
}
}
// Connect to additional peers
while (m_peers.size() < m_idealPeerCount)
{
if (m_freePeers.empty())
{
if (chrono::steady_clock::now() > m_lastPeersRequest + chrono::seconds(10))
{
RLPStream s;
bytes b;
(PeerSession::prep(s).appendList(1) << GetPeersPacket).swapOut(b);
seal(b);
for (auto const& i: m_peers)
if (auto p = i.second.lock())
if (p->isOpen())
p->send(&b);
m_lastPeersRequest = chrono::steady_clock::now();
}
if (!m_accepting)
ensureAccepting();
break;
}
auto x = time(0) % m_freePeers.size();
m_incomingPeers[m_freePeers[x]].second++;
connect(m_incomingPeers[m_freePeers[x]].first);
m_freePeers.erase(m_freePeers.begin() + x);
}
}
// platform for consensus of social contract.
// restricts your freedom but does so fairly. and that's the value proposition.
// guarantees that everyone else respect the rules of the system. (i.e. obeys laws).
// We'll keep at most twice as many as is ideal, halfing what counts as "too young to kill" until we get there.
for (uint old = 15000; m_peers.size() > m_idealPeerCount * 2 && old > 100; old /= 2)
while (m_peers.size() > m_idealPeerCount)
{
// look for worst peer to kick off
// first work out how many are old enough to kick off.
shared_ptr<PeerSession> worst;
unsigned agedPeers = 0;
for (auto i: m_peers)
if (auto p = i.second.lock())
if ((m_mode != NodeMode::PeerServer || p->m_caps != 0x01) && chrono::steady_clock::now() > p->m_connect + chrono::milliseconds(old)) // don't throw off new peers; peer-servers should never kick off other peer-servers.
{
++agedPeers;
if ((!worst || p->m_rating < worst->m_rating || (p->m_rating == worst->m_rating && p->m_connect > worst->m_connect))) // kill older ones
worst = p;
}
if (!worst || agedPeers <= m_idealPeerCount)
break;
worst->disconnect(TooManyPeers);
}
return ret;
}
std::vector<PeerInfo> PeerServer::peers() const
{
const_cast<PeerServer*>(this)->pingAll();
this_thread::sleep_for(chrono::milliseconds(200));
std::vector<PeerInfo> ret;
for (auto& i: m_peers)
if (auto j = i.second.lock())
if (j->m_socket.is_open())
ret.push_back(j->m_info);
return ret;
}
void PeerServer::pingAll()
{
for (auto& i: m_peers)
if (auto j = i.second.lock())
j->ping();
}
bytes PeerServer::savePeers() const
{
RLPStream ret;
int n = 0;
for (auto& i: m_peers)
if (auto p = i.second.lock())
if (p->m_socket.is_open() && p->endpoint().port())
{
ret.appendList(3) << p->endpoint().address().to_v4().to_bytes() << p->endpoint().port() << p->m_id;
n++;
}
return RLPStream(n).appendRaw(ret.out(), n).out();
}
void PeerServer::restorePeers(bytesConstRef _b)
{
for (auto i: RLP(_b))
{
auto k = (Public)i[2];
if (!m_incomingPeers.count(k))
{
m_incomingPeers.insert(make_pair(k, make_pair(bi::tcp::endpoint(bi::address_v4(i[0].toArray<byte, 4>()), i[1].toInt<short>()), 0)));
m_freePeers.push_back(k);
}
}
}