You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

814 lines
22 KiB

/*
This file is part of cpp-ethereum.
cpp-ethereum is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
cpp-ethereum is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with cpp-ethereum. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file TrieDB.h
* @author Gav Wood <i@gavwood.com>
* @date 2014
*/
#pragma once
#include <map>
#include <memory>
#include "Common.h"
#include "Log.h"
#include "TrieCommon.h"
namespace ldb = leveldb;
namespace eth
{
class BasicMap
{
public:
BasicMap() {}
void clear() { m_over.clear(); }
std::map<h256, std::string> const& get() const { return m_over; }
std::string lookup(h256 _h) const { auto it = m_over.find(_h); if (it != m_over.end()) return it->second; return std::string(); }
void insert(h256 _h, bytesConstRef _v) { m_over[_h] = _v.toString(); m_refCount[_h]++; }
void kill(h256 _h) { if (!--m_refCount[_h]) m_over.erase(_h); }
protected:
std::map<h256, std::string> m_over;
std::map<h256, uint> m_refCount;
};
inline std::ostream& operator<<(std::ostream& _out, BasicMap const& _m)
{
for (auto i: _m.get())
{
_out << i.first << ": ";
_out << RLP(i.second);
_out << " " << toHex(i.second);
_out << std::endl;
}
return _out;
}
class Overlay: public BasicMap
{
public:
Overlay(ldb::DB* _db = nullptr): m_db(_db) {}
ldb::DB* db() const { return m_db.get(); }
void setDB(ldb::DB* _db, bool _clearOverlay = true) { m_db = std::shared_ptr<ldb::DB>(_db); if (_clearOverlay) m_over.clear(); }
void commit() { if (m_db) { for (auto const& i: m_over) m_db->Put(m_writeOptions, ldb::Slice((char const*)i.first.data(), i.first.size), ldb::Slice(i.second.data(), i.second.size())); m_over.clear(); m_refCount.clear(); } }
void rollback() { m_over.clear(); m_refCount.clear(); }
std::string lookup(h256 _h) const { std::string ret = BasicMap::lookup(_h); if (ret.empty() && m_db) m_db->Get(m_readOptions, ldb::Slice((char const*)_h.data(), 32), &ret); return ret; }
private:
using BasicMap::clear;
std::shared_ptr<ldb::DB> m_db;
ldb::ReadOptions m_readOptions;
ldb::WriteOptions m_writeOptions;
};
extern const h256 c_shaNull;
/**
* @brief Merkle Patricia Tree "Trie": a modifed base-16 Radix tree.
* This version uses an LDB backend
* Usage:
* @code
* GenericTrieDB<MyDB> t(&myDB);
* assert(t.isNull());
* t.init();
* assert(t.isEmpty());
* t.insert(x, y);
* assert(t.at(x) == y.toString());
* t.remove(x);
* assert(t.isEmpty());
* @endcode
*/
template <class DB>
class GenericTrieDB
{
public:
GenericTrieDB(DB* _db): m_db(_db) {}
GenericTrieDB(DB* _db, h256 _root) { open(_db, _root); }
~GenericTrieDB() {}
void open(DB* _db, h256 _root) { m_db = _db; setRoot(_root); }
void init();
void setRoot(h256 _root) { m_root = _root == h256() ? c_shaNull : _root; /*std::cout << "Setting root to " << _root << " (patched to " << m_root << ")" << std::endl;*/ if (!node(m_root).size()) throw RootNotFound(); }
/// True if the trie is uninitialised (i.e. that the DB doesn't contain the root node).
bool isNull() const { return !node(m_root).size(); }
/// True if the trie is initialised but empty (i.e. that the DB contains the root node which is empty).
bool isEmpty() const { return m_root == c_shaNull && node(m_root).size(); }
h256 root() const { assert(node(m_root).size()); h256 ret = (m_root == c_shaNull ? h256() : m_root); /*std::cout << "Returning root as " << ret << " (really " << m_root << ")" << std::endl;*/ return ret; } // patch the root in the case of the empty trie. TODO: handle this properly.
void debugPrint() {}
std::string at(bytesConstRef _key) const;
void insert(bytesConstRef _key, bytesConstRef _value);
void remove(bytesConstRef _key);
class iterator
{
public:
using value_type = std::pair<bytesConstRef, bytesConstRef>;
iterator() {}
iterator(GenericTrieDB const* _db)
{
m_that = _db;
m_trail.push_back({_db->node(_db->m_root), std::string(1, '\0'), 255}); // one null byte is the HPE for the empty key.
next();
}
iterator& operator++()
{
next();
return *this;
}
value_type operator*() const { return at(); }
value_type operator->() const { return at(); }
bool operator==(iterator const& _c) const { return _c.m_trail == m_trail; }
bool operator!=(iterator const& _c) const { return _c.m_trail != m_trail; }
value_type at() const
{
assert(m_trail.size());
Node const& b = m_trail.back();
assert(b.key.size());
assert(!(b.key[0] & 0x10)); // should be an integer number of bytes (i.e. not an odd number of nibbles).
RLP rlp(b.rlp);
if (rlp.itemCount() == 2)
return std::make_pair(bytesConstRef(b.key).cropped(1), rlp[1].payload());
else
return std::make_pair(bytesConstRef(b.key).cropped(1), rlp[16].payload());
}
private:
void next()
{
while (true)
{
if (m_trail.empty())
{
m_that = nullptr;
return;
}
Node const& b = m_trail.back();
RLP rlp(b.rlp);
if (m_trail.back().child == 255)
{
// Entering. Look for first...
if (rlp.isEmpty())
{
m_trail.pop_back();
continue;
}
if (!(rlp.isList() && (rlp.itemCount() == 2 || rlp.itemCount() == 17)))
{
cdebug << b.rlp.size() << toHex(b.rlp);
cdebug << rlp;
auto c = rlp.itemCount();
cdebug << c;
assert(rlp.isList() && (rlp.itemCount() == 2 || rlp.itemCount() == 17));
}
if (rlp.itemCount() == 2)
{
// Just turn it into a valid Branch
m_trail.back().key = hexPrefixEncode(keyOf(m_trail.back().key), keyOf(rlp), false);
if (isLeaf(rlp))
{
// leaf - exit now.
m_trail.back().child = 0;
return;
}
// enter child.
m_trail.back().rlp = m_that->deref(rlp[1]);
// no need to set .child as 255 - it's already done.
continue;
}
else
{
// Already a branch - look for first valid.
m_trail.back().setFirstChild();
// run through to...
}
}
else
{
// Continuing/exiting. Look for next...
if (!(rlp.isList() && rlp.itemCount() == 17))
{
m_trail.pop_back();
continue;
}
// else run through to...
m_trail.back().incrementChild();
}
// ...here. should only get here if we're a list.
assert(rlp.isList() && rlp.itemCount() == 17);
for (;; m_trail.back().incrementChild())
if (m_trail.back().child == 17)
{
// finished here.
m_trail.pop_back();
break;
}
else if (!rlp[m_trail.back().child].isEmpty())
{
if (m_trail.back().child == 16)
return; // have a value at this node - exit now.
else
{
// lead-on to another node - enter child.
// fixed so that Node passed into push_back is constructed *before* m_trail is potentially resized (which invalidates back and rlp)
Node const& back = m_trail.back();
m_trail.push_back(Node{
m_that->deref(rlp[back.child]),
hexPrefixEncode(keyOf(back.key), NibbleSlice(bytesConstRef(&back.child, 1), 1), false),
255
});
break;
}
}
}
}
struct Node
{
std::string rlp;
std::string key; // as hexPrefixEncoding.
byte child; // 255 -> entering
void setFirstChild() { child = 16; }
void incrementChild() { child = child == 16 ? 0 : child == 15 ? 17 : (child + 1); }
bool operator==(Node const& _c) const { return rlp == _c.rlp && key == _c.key && child == _c.child; }
bool operator!=(Node const& _c) const { return !operator==(_c); }
};
std::vector<Node> m_trail;
GenericTrieDB<DB> const* m_that;
};
iterator begin() const { return this; }
iterator end() const { return iterator(); }
private:
RLPStream& streamNode(RLPStream& _s, bytes const& _b);
std::string atAux(RLP const& _here, NibbleSlice _key) const;
void mergeAtAux(RLPStream& _out, RLP const& _replace, NibbleSlice _key, bytesConstRef _value);
bytes mergeAt(RLP const& _replace, NibbleSlice _k, bytesConstRef _v);
bool deleteAtAux(RLPStream& _out, RLP const& _replace, NibbleSlice _key);
bytes deleteAt(RLP const& _replace, NibbleSlice _k);
// in: null (DEL) -- OR -- [_k, V] (DEL)
// out: [_k, _s]
// -- OR --
// in: [V0, ..., V15, S16] (DEL) AND _k == {}
// out: [V0, ..., V15, _s]
bytes place(RLP const& _orig, NibbleSlice _k, bytesConstRef _s);
// in: [K, S] (DEL)
// out: null
// -- OR --
// in: [V0, ..., V15, S] (DEL)
// out: [V0, ..., V15, null]
bytes remove(RLP const& _orig);
// in: [K1 & K2, V] (DEL) : nibbles(K1) == _s, 0 < _s <= nibbles(K1 & K2)
// out: [K1, H] ; [K2, V] => H (INS) (being [K1, [K2, V]] if necessary)
bytes cleve(RLP const& _orig, uint _s);
// in: [K1, H] (DEL) ; H <= [K2, V] (DEL) (being [K1, [K2, V]] (DEL) if necessary)
// out: [K1 & K2, V]
bytes graft(RLP const& _orig);
// in: [V0, ... V15, S] (DEL)
// out1: [k{i}, Vi] where i < 16
// out2: [k{}, S] where i == 16
bytes merge(RLP const& _orig, byte _i);
// in: [k{}, S] (DEL)
// out: [null ** 16, S]
// -- OR --
// in: [k{i}, N] (DEL)
// out: [null ** i, N, null ** (16 - i)]
// -- OR --
// in: [k{i}K, V] (DEL)
// out: [null ** i, H, null ** (16 - i)] ; [K, V] => H (INS) (being [null ** i, [K, V], null ** (16 - i)] if necessary)
bytes branch(RLP const& _orig);
bool isTwoItemNode(RLP const& _n) const;
std::string deref(RLP const& _n) const;
std::string node(h256 _h) const { return m_db->lookup(_h); }
void insertNode(h256 _h, bytesConstRef _v) { m_db->insert(_h, _v); }
void killNode(h256 _h) { m_db->kill(_h); }
h256 insertNode(bytesConstRef _v) { auto h = sha3(_v); insertNode(h, _v); return h; }
void killNode(RLP const& _d) { if (_d.data().size() >= 32) killNode(sha3(_d.data())); }
h256 m_root;
DB* m_db = nullptr;
};
template <class DB>
std::ostream& operator<<(std::ostream& _out, GenericTrieDB<DB> const& _db)
{
for (auto const& i: _db)
_out << escaped(i.first.toString(), false) << ": " << escaped(i.second.toString(), false) << std::endl;
return _out;
}
template <class KeyType, class DB>
class TrieDB: public GenericTrieDB<DB>
{
public:
TrieDB(DB* _db): GenericTrieDB<DB>(_db) {}
TrieDB(DB* _db, h256 _root): GenericTrieDB<DB>(_db, _root) {}
std::string operator[](KeyType _k) const { return at(_k); }
std::string at(KeyType _k) const { return GenericTrieDB<DB>::at(bytesConstRef((byte const*)&_k, sizeof(KeyType))); }
void insert(KeyType _k, bytesConstRef _value) { GenericTrieDB<DB>::insert(bytesConstRef((byte const*)&_k, sizeof(KeyType)), _value); }
void insert(KeyType _k, bytes const& _value) { insert(_k, bytesConstRef(&_value)); }
void remove(KeyType _k) { GenericTrieDB<DB>::remove(bytesConstRef((byte const*)&_k, sizeof(KeyType))); }
class iterator: public GenericTrieDB<DB>::iterator
{
public:
using Super = typename GenericTrieDB<DB>::iterator;
using value_type = std::pair<KeyType, bytesConstRef>;
iterator() {}
iterator(TrieDB const* _db): Super(_db) {}
value_type operator*() const { return at(); }
value_type operator->() const { return at(); }
value_type at() const
{
auto p = Super::at();
value_type ret;
assert(p.first.size() == sizeof(KeyType));
memcpy(&ret.first, p.first.data(), sizeof(KeyType));
ret.second = p.second;
return ret;
}
};
iterator begin() const { return this; }
iterator end() const { return iterator(); }
};
template <class KeyType, class DB>
std::ostream& operator<<(std::ostream& _out, TrieDB<KeyType, DB> const& _db)
{
for (auto const& i: _db)
_out << i.first << ": " << escaped(i.second.toString(), false) << std::endl;
return _out;
}
}
// Template implementations...
namespace eth
{
template <class DB> void GenericTrieDB<DB>::init()
{
m_root = insertNode(&RLPNull);
// std::cout << "Initialised root to " << m_root << std::endl;
assert(node(m_root).size());
}
template <class DB> void GenericTrieDB<DB>::insert(bytesConstRef _key, bytesConstRef _value)
{
std::string rv = node(m_root);
assert(rv.size());
bytes b = mergeAt(RLP(rv), NibbleSlice(_key), _value);
// mergeAt won't attempt to delete the node is it's less than 32 bytes
// However, we know it's the root node and thus always hashed.
// So, if it's less than 32 (and thus should have been deleted but wasn't) then we delete it here.
if (rv.size() < 32)
killNode(m_root);
m_root = insertNode(&b);
}
template <class DB> std::string GenericTrieDB<DB>::at(bytesConstRef _key) const
{
return atAux(RLP(node(m_root)), _key);
}
template <class DB> std::string GenericTrieDB<DB>::atAux(RLP const& _here, NibbleSlice _key) const
{
if (_here.isEmpty() || _here.isNull())
// not found.
return std::string();
assert(_here.isList() && (_here.itemCount() == 2 || _here.itemCount() == 17));
if (_here.itemCount() == 2)
{
auto k = keyOf(_here);
if (_key == k && isLeaf(_here))
// reached leaf and it's us
return _here[1].toString();
else if (_key.contains(k) && !isLeaf(_here))
// not yet at leaf and it might yet be us. onwards...
return atAux(_here[1].isList() ? _here[1] : RLP(node(_here[1].toHash<h256>())), _key.mid(k.size()));
else
// not us.
return std::string();
}
else
{
if (_key.size() == 0)
return _here[16].toString();
auto n = _here[_key[0]];
if (n.isEmpty())
return std::string();
else
return atAux(n.isList() ? n : RLP(node(n.toHash<h256>())), _key.mid(1));
}
}
template <class DB> bytes GenericTrieDB<DB>::mergeAt(RLP const& _orig, NibbleSlice _k, bytesConstRef _v)
{
// ::operator<<(std::cout << "mergeAt ", _orig) << _k << _v.toString() << std::endl;
// The caller will make sure that the bytes are inserted properly.
// - This might mean inserting an entry into m_over
// We will take care to ensure that (our reference to) _orig is killed.
// Empty - just insert here
if (_orig.isEmpty())
return place(_orig, _k, _v);
assert(_orig.isList() && (_orig.itemCount() == 2 || _orig.itemCount() == 17));
if (_orig.itemCount() == 2)
{
// pair...
NibbleSlice k = keyOf(_orig);
// exactly our node - place value in directly.
if (k == _k && isLeaf(_orig))
return place(_orig, _k, _v);
// partial key is our key - move down.
if (_k.contains(k) && !isLeaf(_orig))
{
killNode(sha3(_orig.data()));
RLPStream s(2);
s.append(_orig[0]);
mergeAtAux(s, _orig[1], _k.mid(k.size()), _v);
return s.out();
}
auto sh = _k.shared(k);
// std::cout << _k << " sh " << k << " = " << sh << std::endl;
if (sh)
// shared stuff - cleve at disagreement.
return mergeAt(RLP(cleve(_orig, sh)), _k, _v);
else
// nothing shared - branch
return mergeAt(RLP(branch(_orig)), _k, _v);
}
else
{
// branch...
// exactly our node - place value.
if (_k.size() == 0)
return place(_orig, _k, _v);
// Kill the node.
killNode(sha3(_orig.data()));
// not exactly our node - delve to next level at the correct index.
byte n = _k[0];
RLPStream r(17);
for (byte i = 0; i < 17; ++i)
if (i == n)
mergeAtAux(r, _orig[i], _k.mid(1), _v);
else
r.append(_orig[i]);
return r.out();
}
}
template <class DB> void GenericTrieDB<DB>::mergeAtAux(RLPStream& _out, RLP const& _orig, NibbleSlice _k, bytesConstRef _v)
{
RLP r = _orig;
std::string s;
if (!r.isList() && !r.isEmpty())
{
s = node(_orig.toHash<h256>());
r = RLP(s);
assert(!r.isNull());
killNode(_orig.toHash<h256>());
}
else
killNode(_orig);
bytes b = mergeAt(r, _k, _v);
// ::operator<<(std::cout, RLP(b)) << std::endl;
streamNode(_out, b);
}
template <class DB> void GenericTrieDB<DB>::remove(bytesConstRef _key)
{
std::string rv = node(m_root);
bytes b = deleteAt(RLP(rv), NibbleSlice(_key));
if (b.size())
{
if (rv.size() < 32)
killNode(m_root);
m_root = insertNode(&b);
}
}
template <class DB> bool GenericTrieDB<DB>::isTwoItemNode(RLP const& _n) const
{
return (_n.isData() && RLP(node(_n.toHash<h256>())).itemCount() == 2)
|| (_n.isList() && _n.itemCount() == 2);
}
template <class DB> std::string GenericTrieDB<DB>::deref(RLP const& _n) const
{
return _n.isList() ? _n.data().toString() : node(_n.toHash<h256>());
}
template <class DB> bytes GenericTrieDB<DB>::deleteAt(RLP const& _orig, NibbleSlice _k)
{
// The caller will make sure that the bytes are inserted properly.
// - This might mean inserting an entry into m_over
// We will take care to ensure that (our reference to) _orig is killed.
// Empty - not found - no change.
if (_orig.isEmpty())
return bytes();
assert(_orig.isList() && (_orig.itemCount() == 2 || _orig.itemCount() == 17));
if (_orig.itemCount() == 2)
{
// pair...
NibbleSlice k = keyOf(_orig);
// exactly our node - return null.
if (k == _k && isLeaf(_orig))
return RLPNull;
// partial key is our key - move down.
if (_k.contains(k))
{
RLPStream s;
s.appendList(2) << _orig[0];
if (!deleteAtAux(s, _orig[1], _k.mid(k.size())))
return bytes();
killNode(sha3(_orig.data()));
RLP r(s.out());
if (isTwoItemNode(r[1]))
return graft(r);
return s.out();
}
else
// not found - no change.
return bytes();
}
else
{
// branch...
// exactly our node - remove and rejig.
if (_k.size() == 0 && !_orig[16].isEmpty())
{
// Kill the node.
killNode(sha3(_orig.data()));
byte used = uniqueInUse(_orig, 16);
if (used != 255)
if (_orig[used].isList() && _orig[used].itemCount() == 2)
return graft(RLP(merge(_orig, used)));
else
return merge(_orig, used);
else
{
RLPStream r(17);
for (byte i = 0; i < 16; ++i)
r << _orig[i];
r << "";
return r.out();
}
}
else
{
// not exactly our node - delve to next level at the correct index.
RLPStream r(17);
byte n = _k[0];
for (byte i = 0; i < 17; ++i)
if (i == n)
if (!deleteAtAux(r, _orig[i], _k.mid(1))) // bomb out if the key didn't turn up.
return bytes();
else {}
else
r << _orig[i];
// check if we ended up leaving the node invalid.
RLP rlp(r.out());
byte used = uniqueInUse(rlp, 255);
if (used == 255) // no - all ok.
return r.out();
// yes; merge
if (isTwoItemNode(rlp[used]))
return graft(RLP(merge(rlp, used)));
else
return merge(rlp, used);
}
}
}
template <class DB> bool GenericTrieDB<DB>::deleteAtAux(RLPStream& _out, RLP const& _orig, NibbleSlice _k)
{
bytes b = _orig.isEmpty() ? bytes() : deleteAt(_orig.isList() ? _orig : RLP(node(_orig.toHash<h256>())), _k);
if (!b.size()) // not found - no change.
return false;
if (_orig.isList())
killNode(_orig);
else
killNode(_orig.toHash<h256>());
streamNode(_out, b);
return true;
}
template <class DB> bytes GenericTrieDB<DB>::place(RLP const& _orig, NibbleSlice _k, bytesConstRef _s)
{
// ::operator<<(std::cout << "place ", _orig) << ", " << _k << ", " << _s.toString() << std::endl;
killNode(_orig);
if (_orig.isEmpty())
return (RLPStream(2) << hexPrefixEncode(_k, true) << _s).out();
assert(_orig.isList() && (_orig.itemCount() == 2 || _orig.itemCount() == 17));
if (_orig.itemCount() == 2)
return (RLPStream(2) << _orig[0] << _s).out();
auto s = RLPStream(17);
for (uint i = 0; i < 16; ++i)
s << _orig[i];
s << _s;
return s.out();
}
// in1: [K, S] (DEL)
// out1: null
// in2: [V0, ..., V15, S] (DEL)
// out2: [V0, ..., V15, null] iff exists i: !!Vi -- OR -- null otherwise
template <class DB> bytes GenericTrieDB<DB>::remove(RLP const& _orig)
{
killNode(_orig);
assert(_orig.isList() && (_orig.itemCount() == 2 || _orig.itemCount() == 17));
if (_orig.itemCount() == 2)
return RLPNull;
RLPStream r(17);
for (uint i = 0; i < 16; ++i)
r << _orig[i];
r << "";
return r.out();
}
template <class DB> RLPStream& GenericTrieDB<DB>::streamNode(RLPStream& _s, bytes const& _b)
{
if (_b.size() < 32)
_s.appendRaw(_b);
else
_s.append(insertNode(&_b));
return _s;
}
template <class DB> bytes GenericTrieDB<DB>::cleve(RLP const& _orig, uint _s)
{
// ::operator<<(std::cout << "cleve ", _orig) << ", " << _s << std::endl;
killNode(_orig);
assert(_orig.isList() && _orig.itemCount() == 2);
auto k = keyOf(_orig);
assert(_s && _s <= k.size());
RLPStream bottom(2);
bottom << hexPrefixEncode(k, isLeaf(_orig), /*ugh*/(int)_s) << _orig[1];
RLPStream top(2);
top << hexPrefixEncode(k, false, 0, /*ugh*/(int)_s);
streamNode(top, bottom.out());
return top.out();
}
template <class DB> bytes GenericTrieDB<DB>::graft(RLP const& _orig)
{
assert(_orig.isList() && _orig.itemCount() == 2);
std::string s;
RLP n;
if (_orig[1].isList())
n = _orig[1];
else
{
// remove second item from the trie after derefrencing it into s & n.
auto lh = _orig[1].toHash<h256>();
s = node(lh);
killNode(lh);
n = RLP(s);
}
assert(n.itemCount() == 2);
return (RLPStream(2) << hexPrefixEncode(keyOf(_orig), keyOf(n), isLeaf(n)) << n[1]).out();
// auto ret =
// std::cout << keyOf(_orig) << " ++ " << keyOf(n) << " == " << keyOf(RLP(ret)) << std::endl;
// return ret;
}
template <class DB> bytes GenericTrieDB<DB>::merge(RLP const& _orig, byte _i)
{
assert(_orig.isList() && _orig.itemCount() == 17);
RLPStream s(2);
if (_i != 16)
{
assert(!_orig[_i].isEmpty());
s << hexPrefixEncode(bytesConstRef(&_i, 1), false, 1, 2, 0);
}
else
s << hexPrefixEncode(bytes(), true);
s << _orig[_i];
return s.out();
}
template <class DB> bytes GenericTrieDB<DB>::branch(RLP const& _orig)
{
// ::operator<<(std::cout << "branch ", _orig) << std::endl;
assert(_orig.isList() && _orig.itemCount() == 2);
auto k = keyOf(_orig);
RLPStream r(17);
if (k.size() == 0)
{
assert(isLeaf(_orig));
for (uint i = 0; i < 16; ++i)
r << "";
r << _orig[1];
}
else
{
byte b = k[0];
for (uint i = 0; i < 16; ++i)
if (i == b)
if (isLeaf(_orig) || k.size() > 1)
{
RLPStream bottom(2);
bottom << hexPrefixEncode(k.mid(1), isLeaf(_orig)) << _orig[1];
streamNode(r, bottom.out());
}
else
r << _orig[1];
else
r << "";
r << "";
}
return r.out();
}
}